Skip to main content

Advertisement

Log in

A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

There is a widespread belief that neurogenesis exists in adult human brain, especially in the dentate gyrus, and it is to be maintained and, if possible, augmented with different stimuli including exercise and certain drugs. Here, we examine the evidence for adult human neurogenesis and note important limitations of the methodologies used to study it. A balanced review of the literature and evaluation of the data indicate that adult neurogenesis in human brain is improbable. In fact, in several high-quality recent studies in adult human brain, unlike in adult brains of other species, neurogenesis was not detectable. These findings suggest that the human brain requires a permanent set of neurons to maintain acquired knowledge for decades, which is essential for complex high cognitive functions unique to humans. Thus, stimulation and/or injection of neural stem cells into human brains may not only disrupt brain homeostatic systems, but also disturb normal neuronal circuits. We propose that the focus of research should be the preservation of brain neurons by prevention of damage, not replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AN:

Adult neurogenesis

BBB:

Blood–brain barrier

B-CSF:

Blood–cerebrospinal fluid barrier

BrdU:

Bromodeoxyuridine

CP:

Choroid plexus

CSF:

Cerebrospinal fluid

DG:

Dentate gyrus

NSC:

Neural stem cell

SNc:

Substantia nigra pars compacta

SGZ:

Subgranular zone

VZ-SVZ:

Ventricular zone–subventricular zone

References

  • Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, Wheeler AL, Guskjolen A, Niibori Y, Shoji H, Ohira K, Richards BA, Miyakawa T, Josselyn SA, Frankland PW (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344:598–602

    CAS  PubMed  Google Scholar 

  • Andreae LC (2018) Adult neurogenesis in humans: dogma overturned, again and again? Sci Trans Med 10:eaat3893

    Google Scholar 

  • Arellano JI, Harding B, Thomas JL (2018) Adult human hippocampus: no new neurons in sight. Cereb Cortex 28:2479–2481

    PubMed  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    CAS  PubMed  Google Scholar 

  • Bakay RA (2005) Neural transplantation. J Neurosurg 103:6–8 (discussion 8)

    PubMed  Google Scholar 

  • Bannigan J, Langman J (1979) The cellular effect of 5-bromodeoxyuridine on the mammalian embryo. J Embryol Exp Morphol 50:123–135

    CAS  PubMed  Google Scholar 

  • Ben Abdallah NM, Slomianka L, Vyssotski AL, Lipp HP (2010) Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging 31:151–161

    PubMed  Google Scholar 

  • Benjamin EJ et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137:e67–e492

    PubMed  Google Scholar 

  • Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 21:6718–6731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landen M, Druid H, Spalding KL, Frisen J (2012) The age of olfactory bulb neurons in humans. Neuron 74:634–639

    CAS  PubMed  Google Scholar 

  • Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Bjork-Eriksson T, Nordborg C, Gage FH, Druid H, Eriksson PS, Frisen J (2006) Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci USA 103:12564–12568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biggers WJ, Barnea ER, Sanyal MK (1987) Anomalous neural differentiation induced by 5-bromo-2’-deoxyuridine during organogenesis in the rat. Teratology 35:63–75

    CAS  PubMed  Google Scholar 

  • Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38:1068–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(589–599):e585

    Google Scholar 

  • Breunig JJ, Arellano JI, Macklis JD, Rakic P (2007) Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell 1:612–627

    CAS  PubMed  Google Scholar 

  • Charvet CJ, Finlay BL (2018) Comparing adult hippocampal neurogenesis across species: translating time to predict the tempo in humans. Front Neurosci 12:706

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sun FY (2007) Age-related decrease of striatal neurogenesis is associated with apoptosis of neural precursors and newborn neurons in rat brain after ischemia. Brain Res 1166:9–19

    CAS  PubMed  Google Scholar 

  • Chen X, Wang K (2016) The fate of medications evaluated for ischemic stroke pharmacotherapy over the period 1995–2015. Acta Pharm Sin B 6:522–530

    PubMed  PubMed Central  Google Scholar 

  • Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK (2000) Enhancement of hippocampal neurogenesis by lithium. J Neurochem 75:1729–1734

    CAS  PubMed  Google Scholar 

  • Cipriani S, Ferrer I, Aronica E, Kovacs GG, Verney C, Nardelli J, Khung S, Delezoide AL, Milenkovic I, Rasika S, Manivet P, Benifla JL, Deriot N, Gressens P, Adle-Biassette H (2018) Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s Disease adults. Cereb Cortex 28:2458–2478

    PubMed  Google Scholar 

  • Cope EC, Gould E (2019) Adult Neurogenesis, glia, and the extracellular matrix. Cell Stem Cell 24:690–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crow D (2019) Could iPSCs enable “off-the-shelf” cell therapy? Cell 177:1667–1669

    CAS  PubMed  Google Scholar 

  • Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT (2016) Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol 42:621–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doorn KJ, Drukarch B, van Dam AM, Lucassen PJ (2014) Hippocampal proliferation is increased in presymptomatic Parkinson’s disease and due to microglia. Neural Plast 2014:959154

    PubMed  PubMed Central  Google Scholar 

  • Duque A, Rakic P (2011) Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. J Neurosci 31:15205–15217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duque A, Rakic P (2015) Identification of proliferating and migrating cells by BrdU and other thymidine analogues. Benefits and limitations. In: Merighi A, Lossi L (eds) Immunocytochemistry and related techniques. Springer, New york, pp 123–129

    Google Scholar 

  • Eckenhoff MF, Rakic P (1988) Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey. J Neurosci 8:2729–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    CAS  PubMed  Google Scholar 

  • Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisen J (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072–1083

    CAS  PubMed  Google Scholar 

  • Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, Fernando C, Kauffman RS, Kallend D, Vaishnaw A, Simon A (2017) A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med 376:41–51

    CAS  PubMed  Google Scholar 

  • Foland LC, Altshuler LL, Sugar CA, Lee AD, Leow AD, Townsend J, Narr KL, Asuncion DM, Toga AW, Thompson PM (2008) Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. NeuroReport 19:221–224

    PubMed  PubMed Central  Google Scholar 

  • Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719

    CAS  PubMed  Google Scholar 

  • Gage FH (2019) Adult neurogenesis in mammals. Science 364:827–828

    CAS  PubMed  Google Scholar 

  • George PM, Steinberg GK (2015) Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron 87:297–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Climent MA, Castillo-Gomez E, Varea E, Guirado R, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2008) A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex 18:2229–2240

    PubMed  Google Scholar 

  • Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488

    CAS  PubMed  Google Scholar 

  • Gould E, Reeves AJ, Graziano MS, Gross CG (1999) Neurogenesis in the neocortex of adult primates. Science 286:548–552

    CAS  PubMed  Google Scholar 

  • Gould E, Vail N, Wagers M, Gross CG (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA 98:10910–10917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groves JO, Leslie I, Huang GJ, McHugh SB, Taylor A, Mott R, Munafo M, Bannerman DM, Flint J (2013) Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model. PLoS Genet 9:e1003718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gusel’nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Naturae 7:42–47

    PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Fernandez M, Fuentes B, Rodriguez-Frutos B, Ramos-Cejudo J, Vallejo-Cremades MT, Diez-Tejedor E (2012) Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. J Cell Mol Med 16:2280–2290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser T, Klaus F, Lipp HP, Amrein I (2009) No effect of running and laboratory housing on adult hippocampal neurogenesis in wild caught long-tailed wood mouse. BMC Neurosci 10:43

    PubMed  PubMed Central  Google Scholar 

  • Hsu TC, Somers CE (1961) Effect of 5-bromodeoxyuridine on mamalian chromosomes. Proc Natl Acad Sci USA 47:396–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubs K, Nanobashvili A, Bonde S, Ekdahl CT, Kokaia Z, Kokaia M, Lindvall O (2006) Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron 52:1047–1059

    CAS  PubMed  Google Scholar 

  • Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, Lee MG, Jang IS, Lee WH, Suk K (2013) Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol 191:5204–5219

    CAS  PubMed  Google Scholar 

  • Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y, Banwait S, Greenberg DA (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA 103:13198–13202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kempermann G (2006) They are not too excited: the possible role of adult-born neurons in epilepsy. Neuron 52:935–937

    CAS  PubMed  Google Scholar 

  • Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisen J (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23:25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37:267–274

    PubMed  Google Scholar 

  • Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Mizuma H, Takara S, Takahashi R, Inoue H, Morita S, Yamamoto M, Okita K, Nakagawa M, Parmar M, Takahashi J (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548:592–596

    CAS  PubMed  Google Scholar 

  • Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011) Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS One 6:e25760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5:e8809

    PubMed  PubMed Central  Google Scholar 

  • Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT (2011) Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds 6 months. Proc Natl Acad Sci USA 108:10326–10331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koketsu D, Mikami A, Miyamoto Y, Hisatsune T (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J Neurosci 23:937–942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolb B, Pedersen B, Ballermann M, Gibb R, Whishaw IQ (1999) Embryonic and postnatal injections of bromodeoxyuridine produce age-dependent morphological and behavioral abnormalities. J Neurosci 19:2337–2346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J, Flickinger JC, Tong D, Marks MP, Jamieson C, Luu D, Bell-Stephens T, Teraoka J (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45

    PubMed  Google Scholar 

  • Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kornack DR, Rakic P (2001) Cell proliferation without neurogenesis in adult primate neocortex. Science 294:2127–2130

    CAS  PubMed  Google Scholar 

  • Kuan CY, Schloemer AJ, Lu A, Burns KA, Weng WL, Williams MT, Strauss KI, Vorhees CV, Flavell RA, Davis RJ, Sharp FR, Rakic P (2004) Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci 24:10763–10772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn HG, Toda T, Gage FH (2018) Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci 38(49):10401–10410

    PubMed  PubMed Central  Google Scholar 

  • La Rosa C, Ghibaudi M, Bonfanti L (2019) Newly generated and non-newly generated “immature” neurons in the mammalian brain: a possible reservoir of young cells to prevent brain aging and disease? J Clin Med 8:685. https://doi.org/10.3390/jcm8050685

    Article  CAS  PubMed Central  Google Scholar 

  • Lee H, Thuret S (2018) Adult human hippocampal neurogenesis: controversy and evidence. Trends Mol Med 24:521–522

    PubMed  Google Scholar 

  • Lehner B, Sandner B, Marschallinger J, Lehner C, Furtner T, Couillard-Despres S, Rivera FJ, Brockhoff G, Bauer HC, Weidner N, Aigner L (2011) The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell Tissue Res 345:313–328

    CAS  PubMed  Google Scholar 

  • Levkoff LH, Marshall GP 2nd, Ross HH, Caldeira M, Reynolds BA, Cakiroglu M, Mariani CL, Streit WJ, Laywell ED (2008) Bromodeoxyuridine inhibits cancer cell proliferation in vitro and in vivo. Neoplasia 10:804–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindvall O, Kokaia Z (2015) Neurogenesis following stroke affecting the adult brain. Cold Spring Harb Perspect Biol 7:a019034

    PubMed  PubMed Central  Google Scholar 

  • Lipp HP, Bonfanti L (2016) Adult neurogenesis in mammals: variations and confusions. Brain Behav Evol 87:205–221

    PubMed  Google Scholar 

  • Lu Z, Elliott MR, Chen Y, Walsh JT, Klibanov AL, Ravichandran KS, Kipnis J (2011) Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nat Cell Biol 13:1076–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009) DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex 19:1028–1041

    PubMed  Google Scholar 

  • Mathews KJ, Allen KM, Boerrigter D, Ball H, Shannon Weickert C, Double KL (2017) Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell 16:1195–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mongiat LA, Schinder AF (2014) Neuroscience. A price to pay for adult neurogenesis. Science 344:594–595

    CAS  PubMed  Google Scholar 

  • Moreno-Jimenez EP, Flor-Garcia M, Terreros-Roncal J, Rabano A, Cafini F, Pallas-Bazarra N, Avila J, Llorens-Martin M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25:554–560

    CAS  PubMed  Google Scholar 

  • Morris SM (1991) The genetic toxicology of 5-bromodeoxyuridine in mammalian cells. Mutat Res 258:161–188

    CAS  PubMed  Google Scholar 

  • Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414

    PubMed  Google Scholar 

  • Ovsepian SV (2019) The dark matter of the brain. Brain Struct Funct 224:973–983

    PubMed  Google Scholar 

  • Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A (2016) Brain size and limits to adult neurogenesis. J Comp Neurol 524:646–664

    PubMed  Google Scholar 

  • Paredes MF, Sorrells SF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez Martin AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Does adult neurogenesis persist in the human hippocampus? Cell Stem Cell 23:780–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parent JM, Lowenstein DH (2002) Seizure-induced neurogenesis: are more new neurons good for an adult brain? Prog Brain Res 135:121–131

    PubMed  Google Scholar 

  • Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813

    PubMed  Google Scholar 

  • Parolisi R, Cozzi B, Bonfanti L (2018) Humans and dolphins: decline and fall of adult neurogenesis. Front Neurosci 12:497

    PubMed  PubMed Central  Google Scholar 

  • Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rakic P (1985) Limits of neurogenesis in primates. Science 227:1054–1056

    CAS  PubMed  Google Scholar 

  • Rakic P (2002a) Neurogenesis in adult primates. Prog Brain Res 138:3–14

    CAS  PubMed  Google Scholar 

  • Rakic P (2002b) Adult neurogenesis in mammals: an identity crisis. J Neurosci 22:614–618

    PubMed  PubMed Central  Google Scholar 

  • Rakic P (2002c) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71

    CAS  PubMed  Google Scholar 

  • Ross HH, Levkoff LH, Marshall GP 2nd, Caldeira M, Steindler DA, Reynolds BA, Laywell ED (2008) Bromodeoxyuridine induces senescence in neural stem and progenitor cells. Stem Cells 26:3218–3227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saffhill R, Ockey CH (1985) Strand breaks arising from the repair of the 5-bromodeoxyuridine-substituted template and methyl methanesulphonate-induced lesions can explain the formation of sister chromatid exchanges. Chromosoma 92:218–224

    CAS  PubMed  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    CAS  PubMed  Google Scholar 

  • Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    CAS  PubMed  Google Scholar 

  • Sekerkova G, Ilijic E, Mugnaini E (2004) Bromodeoxyuridine administered during neurogenesis of the projection neurons causes cerebellar defects in rat. J Comp Neurol 470:221–239

    PubMed  Google Scholar 

  • Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder JS (2018) Questioning human neurogenesis. Nature 555:315–316

    CAS  PubMed  Google Scholar 

  • Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, Kamhi JF, Cameron HA (2009) Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci 29:14484–14495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder JS, Grigereit L, Russo A, Seib DR, Brewer M, Pickel J, Cameron HA (2016) A transgenic rat for specifically inhibiting adult neurogenesis. eNeuro 3

  • Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisen J (2005) Retrospective birth dating of cells in humans. Cell 122:133–143

    CAS  PubMed  Google Scholar 

  • Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spector R (2009) Nutrient transport systems in brain: 40 years of progress. J Neurochem 111:315–320

    CAS  PubMed  Google Scholar 

  • Spector R (2010) Nature and consequences of mammalian brain and CSF efflux transporters: four decades of progress. J Neurochem 112:13–23

    CAS  PubMed  Google Scholar 

  • Spector R (2014) Vitamin transport diseases of brain: focus on folates. Thiamine Riboflavin Brain Disord Therapy 3:6

    Google Scholar 

  • Spector R (2016) New insight into the dietary cause of atherosclerosis: implications for pharmacology. J Pharmacol Exp Ther 358:103–108

    CAS  PubMed  Google Scholar 

  • Spector R, Johanson CE (2007) The origin of deoxynucleosides in brain: implications for the study of neurogenesis and stem cell therapy. Pharm Res 24:859–867

    CAS  PubMed  Google Scholar 

  • Spector R, Johanson CE (2010) Vectorial ligand transport through mammalian choroid plexus. Pharm Res 27:2054–2062

    CAS  PubMed  Google Scholar 

  • Spector R, Johanson CE (2014) The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain. Mol Brain 7:3

    PubMed  PubMed Central  Google Scholar 

  • Spector R, Robert Snodgrass S, Johanson CE (2015a) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68

    CAS  PubMed  Google Scholar 

  • Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE (2015b) A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 267:78–86

    PubMed  Google Scholar 

  • Streit WJ (2000) Microglial response to brain injury: a brief synopsis. Toxicol Pathol 28:28–30

    CAS  PubMed  Google Scholar 

  • Takamori Y, Mori T, Wakabayashi T, Nagasaka Y, Matsuzaki T, Yamada H (2009) Nestin-positive microglia in adult rat cerebral cortex. Brain Res 1270:10–18

    CAS  PubMed  Google Scholar 

  • Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214

    CAS  PubMed  Google Scholar 

  • Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, Kim N, Dawe RJ, Bennett DA, Arfanakis K, Lazarov O (2019) Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell 24:1–9

    Google Scholar 

  • van den Berge SA, van Strien ME, Korecka JA, Dijkstra AA, Sluijs JA, Kooijman L, Eggers R, De Filippis L, Vescovi AL, Verhaagen J, van de Berg WD, Hol EM (2011) The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain 134:3249–3263

    PubMed  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    PubMed  Google Scholar 

  • Webster W, Shimada M, Langman J (1973) Effect of fluorodeoxyuridine, colcemid, and bromodeoxyuridine on developing neocortex of the mouse. Am J Anat 137:67–85

    CAS  PubMed  Google Scholar 

  • Wulansari N, Kim EH, Sulistio YA, Rhee YH, Song JJ, Lee SH (2017) Vitamin C-induced epigenetic modifications in donor NSCs establish midbrain marker expressions critical for cell-based therapy in Parkinson’s disease. Stem Cell Reports 9:1192–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yee AG, Forbes B, Cheung PY, Martini A, Burrell MH, Freestone PS, Lipski J (2019) Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta. J Neurochem 148:462–479

    CAS  PubMed  Google Scholar 

  • Young W (2009) Review of lithium effects on brain and blood. Cell Transpl 18:951–975

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Michiko Spector for her valuable contribution in the preparation of this manuscript. This work has been made in part possible by MacBrainResource.

Funding

NIMH R01-MH113257 to AD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alvaro Duque or Reynold Spector.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

The author declares that the manuscript is in complete compliance with the ethical standards of Brain Structure and Function.

Ethical approval and inform consent

This is a review article and no procedures of any kind were performed on any animals or humans by the authors themselves. This review article is in accordance with general ethical standards of scientific conduct and scientific writing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duque, A., Spector, R. A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Struct Funct 224, 2281–2295 (2019). https://doi.org/10.1007/s00429-019-01917-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01917-6

Keywords

Navigation