Skip to main content
Log in

Enhanced expression of Pafah1b1 causes over-migration of cerebral cortical neurons into the marginal zone

  • Short Communication
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Mutations of PAFAH1B1 cause classical lissencephaly in humans. In addition, duplications and triplications of PAFAH1B1 are found in individuals with intellectual disability and other neurological disorders suggesting that proper brain development is highly sensitive to the PAFAH1B1 dosage. To examine the effect of PAFAH1B1 over-dosage in neural development, especially in migration of neurons and layer formation during cerebral cortical development, we overexpressed Pafah1b1 in migrating neurons in the mouse embryonic cortex using in utero electroporation. Enhanced expression of Pafah1b1 in radially-migrating neurons resulted in their over-migration into the marginal zone. Neurons that invaded the marginal zone were oriented abnormally. Layer distribution of Pafaha1b1-overexpressing neurons shifted more superficially than control neurons. Some of the Pafaha1b1-overexpressing future layer 4 neurons changed their positions to layers 2/3. Furthermore, they also changed their layer marker expression from layer 4 to layers 2/3. These results suggest that overexpression of Pafah1b1 affects the migration of neurons and disrupts layer formation in the developing cerebral cortex, and further support the idea that appropriate dosage of Pafah1b1 is crucial for the proper development of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bar I et al (1995) A YAC contig containing the reeler locus with preliminary characterization of candidate gene fragments. Genomics 26(3):543–549

    Article  CAS  PubMed  Google Scholar 

  • Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 65(12):1873–1887

    Article  CAS  PubMed  Google Scholar 

  • Bi W et al (2009) Increased LIS1 expression affects human and mouse brain development. Nat Genet 41(2):168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahana A et al (2001) Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc Natl Acad Sci USA 98(11):6429–6434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curry CJ et al (2013) The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. Am J Med Genet A 161A(8):1833–1852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • D’Arcangelo G et al (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719–723

    Article  PubMed  Google Scholar 

  • Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Muller U (2011) Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69(3):482–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074

    Article  CAS  PubMed  Google Scholar 

  • Hevner RF et al (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29(2):353–366

    Article  CAS  PubMed  Google Scholar 

  • Hirotsune S et al (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19(4):333–339

    Article  CAS  PubMed  Google Scholar 

  • Horton AC et al (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48(5):757–771

    Article  CAS  PubMed  Google Scholar 

  • Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389(6652):733–737

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Nakajima K, Mikoshiba K (2000) The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Brain Res Mol Brain Res 75(1):121–127

    Article  CAS  PubMed  Google Scholar 

  • Kubo K et al (2010) Ectopic Reelin induces neuronal aggregation with a normal birthdate-dependent “inside-out” alignment in the developing neocortex. J Neurosci 30(33):10953–10966

    Article  CAS  PubMed  Google Scholar 

  • Lockrow JP, Holden KR, Dwivedi A, Matheus MG, Lyons MJ (2012) LIS1 duplication: expanding the phenotype. J Child Neurol 27(6):791–795

    Article  PubMed  Google Scholar 

  • McKenney RJ, Vershinin M, Kunwar A, Vallee RB, Gross SP (2010) LIS1 and NudE induce a persistent dynein force-producing state. Cell 141(2):304–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4(2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, O’Leary DD (2003) Dynamic patterned expression of orphan nuclear receptor genes RORalpha and RORbeta in developing mouse forebrain. Dev Neurosci 25(2–4):234–244

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Johnson JE, O’Leary DD (1999) Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J Neurosci 19(24):10877–10885

    CAS  PubMed  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M et al (1995) The reeler gene-associated antigen on Cajal–Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14(5):899–912

    Article  CAS  PubMed  Google Scholar 

  • Oishi K, Aramaki M, Nakajima K (2016a) Mutually repressive interaction between Brn1/2 and Rorb contributes to the establishment of neocortical layer 2/3 and layer 4. Proc Natl Acad Sci USA 113(12):3371–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oishi K et al (2016b) Identity of neocortical layer 4 neurons is specified through correct positioning into the cortex. Elife 5:e10907

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinto Lord MC, Caviness VS Jr (1979) Determinants of cell shape and orientation: a comparative Golgi analysis of cell-axon interrelationships in the developing neocortex of normal and reeler mice. J Comp Neurol 187(1):49–69

    Article  CAS  PubMed  Google Scholar 

  • Reiner O, Sapir T (2013) LIS1 functions in normal development and disease. Curr Opin Neurobiol 23(6):951–956

    Article  CAS  PubMed  Google Scholar 

  • Reiner O et al (1993) Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246

    Article  CAS  PubMed  Google Scholar 

  • Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K (2011) The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J Neurosci 31(25):9426–9439

    Article  CAS  PubMed  Google Scholar 

  • Sekine K et al (2012) Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin alpha5beta1. Neuron 76(2):353–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine K, Tabata H, Nakajima K (2013) Cell polarity and initiation of migration. Compr Dev Neurosci Cell Migr Form Neuronal Connect Chapter 12:231–244

    Google Scholar 

  • Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60(1):56–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon M et al (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389(6652):730–733

    Article  CAS  PubMed  Google Scholar 

  • Shimojima K et al (2010) Genomic copy number variations at 17p13.3 and epileptogenesis. Epilepsy Res 89(2–3):303–309

    Article  CAS  PubMed  Google Scholar 

  • Shu T et al (2004) Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44(2):263–277

    Article  CAS  PubMed  Google Scholar 

  • Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872

    Article  CAS  PubMed  Google Scholar 

  • Tabata H, Nakajima K (2008) Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ 50(6):507–511

    Article  CAS  PubMed  Google Scholar 

  • Tabata H, Kanatani S, Nakajima K (2009) Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb Cortex 19(9):2092–2105

    Article  PubMed  Google Scholar 

  • Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1983) Distribution and morphology of corticospinal tract neurons in reeler mouse cortex by the retrograde HRP method. J Comp Neurol 218(3):314–326

    Article  CAS  PubMed  Google Scholar 

  • Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice. J Comp Neurol 232(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Tsai JW, Chen Y, Kriegstein AR, Vallee RB (2005) LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol 170(6):935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai JW, Bremner KH, Vallee RB (2007) Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10(8):970–979

    Article  CAS  PubMed  Google Scholar 

  • Umeshima H, Hirano T, Kengaku M (2007) Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci USA 104(41):16182–16187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneshima H et al (1997) A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/reelin. Neurosci Res 29(3):217–223

    Article  CAS  PubMed  Google Scholar 

  • Youn YH, Pramparo T, Hirotsune S, Wynshaw-Boris A (2009) Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci 29(49):15520–15530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Junichi Miyazaki (Osaka University) for providing us with the pCAGGS vector. This study was supported by KAKENHI (JP26830015, JP15H02355, JP16H06482) of the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT)/Japan Society for the Promotion of Science (JSPS), Takeda Science Foundation, Naito Foundation, Keio Gijuku Academic Development Funds, and Fukuzawa Memorial Fund for the Advancement of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kei-ichi Katayama or Kazunori Nakajima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2017_1497_MOESM1_ESM.tif

Supplementary Fig. 1 Overexpression of Pafah1b1 in migrating neurons. Embryonic brains were electroporated with a control or Pafah1b1-expressing plasmid together with a pCAGGS-EGFP vector at E14.5. Overexpression of Pafah1b1 in neurons electroporated with a Pafah1b1-expressing plasmid was confirmed by immunohistochemistry. Scale bar, 20 μm (TIFF 2667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katayama, Ki., Hayashi, K., Inoue, S. et al. Enhanced expression of Pafah1b1 causes over-migration of cerebral cortical neurons into the marginal zone. Brain Struct Funct 222, 4283–4291 (2017). https://doi.org/10.1007/s00429-017-1497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1497-9

Keywords

Navigation