Skip to main content

Advertisement

Log in

Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adluru N, Zhang H, Fox AS, Shelton SE, Ennis CM, Bartosic AM, Oler JA, do Tromp PM, Zakszewski E, Gee JC, Kalin NH, Alexander AL (2012) A diffusion tensor brain template for rhesus macaques. Neuroimage 59(1):306–318

    Article  PubMed  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 103:247–254

    Article  CAS  Google Scholar 

  • Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  • Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1):144–155

    Article  CAS  PubMed  Google Scholar 

  • Black KJ, Koller JM, Snyder AZ, Perlmutter JS (2001) Template images for nonhuman primate neuroimaging: 2. Macaque. Neuroimage 4(3):744–748

    Article  Google Scholar 

  • Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA, Johnson GA (2015) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 117:408–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94

    Article  PubMed  Google Scholar 

  • Dyrby TB, Baare WFC, Alexander DC, Jelsing J, Garde E, Sogaard LV (2011) An ex vivo imaging pipeline for producing high-quality and high-resolution diffusion weighted imaging datasets. Hum Brain Mapp 32:544–563

    Article  PubMed  Google Scholar 

  • Frey S, Pandya DN, Chakravarty MM, Bailey L, Petrides M, Collins DL (2011) An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space). Neuroimage 55(4):1435–1442

    Article  PubMed  Google Scholar 

  • Hendry SH, Calkins DJ (1998) Neuronal chemistry and functional organization in the primate visual system. Trends Neurosci 21:344–349

    Article  CAS  PubMed  Google Scholar 

  • Hendry SH, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–577

    Article  CAS  PubMed  Google Scholar 

  • Hofer S, Merboldt KD, Tammer R, Frahm J (2008) Rehsus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo. Cereb Cortex 18:1079–1084

    Article  PubMed  Google Scholar 

  • Huang H, Ceritoglu C, Li X, Qiu A, Miller MI, van Zijl PCM, Mori S (2008a) Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping. Magn Reson Imaging 26:1294–1302

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Yamamoto A, Hossain MA, Younes L, Mori S (2008b) Quantitative cortical mapping of fractional anisotropy in developing rat brains. J Neurosci 28:1427–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Prince JL, Mishra V, Carass A, Landman B, Park DC, Tamminga C, King R, Miller MI, van Zijl PC, Mori S (2011) A framework on surface-based connectivity quantification for the human brain. J Neurosci Methods 197(2):324–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Fan X, Weiner M, Martin-Cook K, Xiao G, Davis J, Devous M, Rosenberg R, Diaz-Arrastia R (2012a) Distinctive disruption patterns of white matter tracts in Alzheimer’s disease with full diffusion tensor characterization. Neurobiol Aging 33:2029–2045

    Article  PubMed  Google Scholar 

  • Huang H, Gundapuneedi T, Rao U (2012b) White matter disruptions in adolescents exposed to childhood maltreatment and vulnerability to psychopathology. Neuropsychopharmacology 37:2693–2701

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Van Zijl PC, Kim J, Pearlson GD, Mori S (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81:106–116

    Article  PubMed  Google Scholar 

  • Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515–525

    Article  CAS  PubMed  Google Scholar 

  • Lerch JP, Gazdzinski L, Germann J, Sled JG, Henkelman RM, Nieman BJ (2012) Wanted dead or alive? The tradeoff between in vivo versus ex vivo MR brain imaging in the mouse. Front Neuroinform 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Tian X, Liu H, Mo Y, Bai F, Zhao X, Ma Y, Wang J (2015) Rehsus monkey brain development during late infancy and the effect of phencyclidine: a longitudinal MRI and DTI study. Neuroimage 107:65–75

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Bowden DM (1996) A stereotaxic template atlas of the macaque brain for digital imaging and quantitative neuroanatomy. Neuroimage 4:119–150

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Bowden DM (2000) Primate brain maps: structure of the macaque brain. Elsevier, Amsterdam

    Google Scholar 

  • McLaren DG, Kosmatka KJ, Oakes TR, Kroenke CD, Kohama SG, Matochik JA, Ingram DK, Johnson SC (2009) A population-average MRI-based atlas collection of the rhesus macaque. Neuroimage 45(1):52–59

    Article  PubMed  Google Scholar 

  • Miller MI, Trouve A, Younes L (2002) On the metrics and Euler–Lagrange equations of computational anatomy. Annu Rev Biomed Eng 4:375–405

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40(2):570–582

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Huang XF, Toga AW (2009) The rhesus monkey brain I stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    Article  CAS  PubMed  Google Scholar 

  • Rohlfing T, Kroenke CD, Sullivan EV, Dubach MF, Bowden DM, Grant KA, Pfefferbaum A (2012) The INIA19 template and neuromaps atlas for primate brain image parcellation and spatial normalization. Front Neuroinform 6:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem KS, Logothetis NK (2007) A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates. Elsevier, San Diego

    Google Scholar 

  • Schmahmann D, Pandya DN (2006) Fiber pathways of the brain. Oxford Univ. Press, USA

    Book  Google Scholar 

  • Shi Y, Budin F, Yapuncich E, Rumple A, Young JT, Payne C, Zhang X, Hu X, Godfrey J, Howell B, Sanchez MM, Styner MA (2017) UNC-Emory infant atlases for macaque brain image analysis: postnatal brain development through 12 months. Front Neurosci 10:617

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  • Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26:132–140

    Article  PubMed  Google Scholar 

  • Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E (2000) Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404:187–190

    Article  CAS  PubMed  Google Scholar 

  • Stieltjes B, Kaufmann WE, van Zijl PC, Fredericksen K, Pearlson GD, Solaiyappan M, Mori S (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14:723–735

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC, Dierker DL (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56(2):209–225

    Article  PubMed  Google Scholar 

  • Wakana S, Jiang H, Nagae-Poetscher LM, Van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87

    Article  PubMed  Google Scholar 

  • Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, Van Zijl PC, Mori S (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: i. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Mori S, Shen D, van Ziji PC, Davatzikos C (2003) Spatial normalization of diffusion tensor fields. Magn Reson Med 50:175–182

    Article  PubMed  Google Scholar 

  • Zakszewski E, Adluru N, do Tromp PM, Kalin N, Alexander AL (2014) A diffusion-tensor-based white matter atlas for rhesus macaques. PLoS One 9(9):e107398

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Richards LJ, Yarowsky P, Huang H, van Zijl PC, Mori S (2003) Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage 20:1639–1648

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH Grants R21 EB009545(HH), R01MH092535(HH), U01MH105972(NS) and U54 HD086984(HH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Jeon, T., Yu, Q. et al. Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space. Brain Struct Funct 222, 4131–4147 (2017). https://doi.org/10.1007/s00429-017-1463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1463-6

Keywords

Navigation