Skip to main content

Advertisement

Log in

Targeted deletion of Aqp4 promotes the formation of astrocytic gap junctions

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Aquaporin-4 (AQP4) is the predominant water channel in the brain and is expressed in high density in astrocytes. By fluxing water along osmotic gradients, AQP4 contributes to brain volume and ion homeostasis. Here we ask whether deletion of Aqp4 leads to upregulation of the gap junctional proteins connexin-43 (Cx43) and connexin-30 (Cx30). These molecules couple adjacent astrocytes to each other and allow water and ions to redistribute within the astrocyte syncytium. Immunogold analysis of parietal cortex and hippocampus showed that the number of gap junctions per capillary profile is increased in AQP4 knockout (AQP4 KO) mice. The most pronounced changes were observed for Cx43 in hippocampus where the number of connexin labeled gap junctions increased by 100% following AQP4 KO. Western blot analysis of whole tissue homogenates showed no change in the amount of Cx43 or Cx30 protein after AQP4 KO. However, AQP4 KO led to a significant increase in the amount of Cx43 in a Triton X-100 insoluble fraction. This fraction is associated with connexin assembly into gap junctional plaques in the plasma membrane. In line with our immunoblot data, RT-qPCR showed no significant increase in Cx43 and Cx30 mRNA levels after AQP4 KO. Our findings suggest that AQP4 KO leads to increased aggregation of Cx43 into gap junctions and provide a putative mechanistic basis for the enhanced tracer coupling in hippocampi of AQP4 KO mice. The increased number of gap junctions in AQP4 deficient mice may explain why Aqp4 deletion has rather modest effects on brain volume and K+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aberg ND, Carlsson B, Rosengren L, Oscarsson J, Isaksson OG, Ronnback L, Eriksson PS (2000) Growth hormone increases connexin-43 expression in the cerebral cortex and hypothalamus. Endocrinology 141:3879–3886. doi:10.1210/endo.141.10.7731

    Article  CAS  PubMed  Google Scholar 

  • Amiry-Moghaddam M et al (2003a) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 100:2106–2111. doi:10.1073/pnas.0437946100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiry-Moghaddam M et al (2003b) Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci USA 100:13615–13620. doi:10.1073/pnas.2336064100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiry-Moghaddam M et al (2005) Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J Off Publ Feder Am Soc Exp Biol 19:1459–1467. doi:10.1096/fj.04-3515com

    CAS  Google Scholar 

  • Ball KK, Harik L, Gandhi GK, Cruz NF, Dienel GA (2011) Reduced gap junctional communication among astrocytes in experimental diabetes: contributions of altered connexin protein levels and oxidative-nitrosative modifications. J Neurosci Res 89:2052–2067. doi:10.1002/jnr.22663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellot-Saez A, Kekesi O, Morley JW, Buskila Y (2017) Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci Biobehav Rev 77:87–97. doi:10.1016/j.neubiorev.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  • Binder DK, Yao X, Verkman AS, Manley GT (2006) Increased seizure duration in mice lacking aquaporin-4 water channels. Acta Neurochir Suppl 96:389–392

    Article  CAS  PubMed  Google Scholar 

  • Cooper CD, Lampe PD (2002) Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem 277:44962–44968. doi:10.1074/jbc.M209427200

    Article  CAS  PubMed  Google Scholar 

  • Ezan P et al (2012) Deletion of astroglial connexins weakens the blood–brain barrier. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 32:1457–1467. doi:10.1038/jcbfm.2012.45

    Article  CAS  Google Scholar 

  • Griemsmann S et al (2015) Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells. Cereb Cortex 25:3420–3433. doi:10.1093/cercor/bhu157

    Article  PubMed  Google Scholar 

  • Haas B, Schipke CG, Peters O, Sohl G, Willecke K, Kettenmann H (2006) Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. Cereb cortex 16:237–246. doi:10.1093/cercor/bhi101

    Article  PubMed  Google Scholar 

  • Haj-Yasein NN, Bugge CE, Jensen V, Ostby I, Ottersen OP, Hvalby O, Nagelhus EA (2015) Deletion of aquaporin-4 increases extracellular K concentration during synaptic stimulation in mouse hippocampus. Brain Struct Funct 220(4):2469–74 doi:10.1007/s00429-014-0767-z

    Article  CAS  PubMed  Google Scholar 

  • Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111. doi:10.1126/scitranslmed.3003748

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan D, Dupper A, Deshpande T, De Graan PNE, Steinhauser C, Bedner P (2016) Experimental febrile seizures impair interastrocytic gap junction coupling in juvenile mice. J Neurosci Res 94:804–813. doi:10.1002/jnr.23726

    Article  CAS  PubMed  Google Scholar 

  • Lee TS, Eid T, Mane S, Kim JH, Spencer DD, Ottersen OP, de Lanerolle NC (2004) Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy. Acta Neuropathol 108:493–502

    Article  CAS  PubMed  Google Scholar 

  • Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233–31237. doi:10.1074/jbc.M104368200

    Article  CAS  PubMed  Google Scholar 

  • Lu DC, Zhang H, Zador Z, Verkman AS (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J Off Publ Feder Am Soc Exp Biol 22:3216–3223. doi:10.1096/fj.07-104836

    CAS  Google Scholar 

  • Lunde LK, Camassa LM, Hoddevik EH, Khan FH, Ottersen OP, Boldt HB, Amiry-Moghaddam M (2015) Postnatal development of the molecular complex underlying astrocyte polarization. Brain Struct Funct 220(4):2087–101 doi:10.1007/s00429-014-0775-z

    Article  PubMed  Google Scholar 

  • Manley GT et al (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163. doi:10.1038/72256

    Article  CAS  PubMed  Google Scholar 

  • Musil LS, Goodenough DA (1991) Biochemical-analysis of connexin43 intracellular-transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357–1374. doi:10.1083/jcb.115.5.1357

    Article  CAS  PubMed  Google Scholar 

  • Musil LS, Cunningham BA, Edelman GM, Goodenough DA (1990) Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell lines. J Cell Biol 111:2077–2088

    Article  CAS  PubMed  Google Scholar 

  • Mylonakou MN et al (2009) Analysis of mice with targeted deletion of AQP9 gene provides conclusive evidence for expression of AQP9 in neurons. J Neurosci Res 87:1310–1322. doi:10.1002/jnr.21952

    Article  CAS  PubMed  Google Scholar 

  • Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93:1543–1562. doi:10.1152/physrev.00011.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32:29–44

    Article  CAS  PubMed  Google Scholar 

  • Nagy JI, Yamamoto T, Sawchuk MA, Nance DM, Hertzberg EL (1992) Quantitative immunohistochemical and biochemical correlates of connexin43 localization in rat brain. Glia 5:1–9. doi:10.1002/glia.440050102

    Article  CAS  PubMed  Google Scholar 

  • Nagy JI, Patel D, Ochalski PAY, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88:447–468. doi:10.1016/S0306-4522(98)00191-2

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  Google Scholar 

  • Niermann H, Amiry-Moghaddam M, Holthoff K, Witte OW, Ottersen OP (2001) A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci 21:3045–3051

    CAS  PubMed  Google Scholar 

  • Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388:167–171. doi:10.1038/40618

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nature Rev Neurosci 14:265–277. doi:10.1038/nrn3468

    Article  CAS  Google Scholar 

  • Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J Off Publ Feder Am Soc Exp Biol 18:1291–1293. doi:10.1096/fj.04-1723fje

    CAS  Google Scholar 

  • Promeneur D, Lunde LK, Amiry-Moghaddam M, Agre P (2013) Protective role of brain water channel AQP4 in murine cerebral malaria. Proc Natl Acad Sci USA 110:1035–1040. doi:10.1073/pnas.1220566110

    Article  CAS  PubMed  Google Scholar 

  • Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels: extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1063–1074. doi:10.1083/jcb.148.5.1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 95:11981–11986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rash JE, Yasumura T, Dudek FE, Nagy JI (2001) Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 21:1983–2000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555. doi:10.1126/science.1164022

    Article  CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419:261–272. doi:10.1042/Bj20082319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solan JL, Fry MD, TenBroek EM, Lampe PD (2003) Connexin43 phosphorylation at S368 is acute during S and G2/M and in response to protein kinase C activation. J Cell Sci 116:2203–2211

    Article  CAS  PubMed  Google Scholar 

  • Strohschein S, Huttmann K, Gabriel S, Binder DK, Heinemann U, Steinhauser C (2011) Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59:973–980. doi:10.1002/glia.21169

    Article  PubMed  Google Scholar 

  • Takumi Y et al (1998) Select types of supporting cell in the inner ear express aquaporin-4 water channel protein. Eur J Neurosci 10:3584–3595

    Article  CAS  PubMed  Google Scholar 

  • Thrane AS et al (2011) Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc Natl Acad Sci USA 108:846–851. doi:10.1073/pnas.1015217108

    Article  CAS  PubMed  Google Scholar 

  • Verbavatz JM, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110(Pt 22):2855–2860

    CAS  PubMed  Google Scholar 

  • Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochem Biophys Acta 1758:1085–1093. doi:10.1016/j.bbamem.2006.02.018

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580

    Article  CAS  PubMed  Google Scholar 

  • Yang J et al (2011) Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer’s disease. J Alzheimers Dis 27:711–722. doi:10.3233/JAD-2011-110725

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms.Bjørg Riber, Karen Marie Gujord and Jorunn Knutsen for the technical assistance and Carina Knudsen for the help with the artwork. Cx30−/−Cx43fl/fl/hGFAP-Cre mice were a kind gift from Dr. Martine Cohen Salmon, École des Neurosciences de Paris Île-de-France (ENP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Amiry-Moghaddam.

Ethics declarations

Ethical approval

All procedures performed in this study involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoozi, S., Skauli, N., Rahmani, S. et al. Targeted deletion of Aqp4 promotes the formation of astrocytic gap junctions. Brain Struct Funct 222, 3959–3972 (2017). https://doi.org/10.1007/s00429-017-1448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1448-5

Keywords

Navigation