Skip to main content
Log in

The rostromedial zona incerta is involved in attentional processes while adjacent LHA responds to arousal: c-Fos and anatomical evidence

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Neurons producing melanin-concentrating hormone (MCH) are located in the tuberal lateral hypothalamus (LHA) and in the rostromedial part of the zona incerta (ZI). This distribution suggests that rostromedial ZI shares some common features with the LHA. However, its functions with regard to arousal or feeding, which are often associated with the LHA, have not been thoroughly investigated. This study analyses the responses in the tuberal LHA and adjacent rostromedial ZI after experiments related to arousal, exploration, food teasing and ingestive behavior. Specific aspects of the connections of the rostromedial ZI were also studied using retrograde and anterograde tract-tracing approaches. The rostromedial ZI is activated during exploratory and teasing experiments. It receives specific projections from the frontal eye field and the anterior pole of the superior colliculus that are involved in gaze fixation and saccadic eye movements. It also receives projections from the laterodorsal tegmental nucleus involved in attention/arousal. By contrast, the tuberal LHA is activated during wakefulness and exploratory behavior and reportedly receives projections from the medial prefrontal and insular cortex, and from several brainstem structures such as the periaqueductal gray. We conclude that the rostromedial ZI is involved in attentional processes while the adjacent tuberal LHA is involved in arousal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ACAd:

Anterior cingulate area, dorsal part

ACB:

Nucleus accumbens

ac:

Anterior commissure

aco:

Anterior commissure, olfactory limb

AD:

Anterodorsal nucleus thalamus

AHN:

Anterior hypothalamic nucleus

AId:

Agranular insular area, dorsal part

AM:

Anteromedial nucleus thalamus

AMd:

Anteromedial nucleus thalamus, dorsal part

AP:

Anteroposterior

APN:

Anterior pretectal nucleus

AQ:

Cerebral aqueduct proper

ARH:

Arcuate hypothalamic nucleus

AV:

Anteroventral nucleus thalamus

BLA:

Basolateral amygdalar nucleus

BST:

Bed nuclei stria terminalis

C:

Control rat

CEA:

Central amygdalar nucleus

CL:

Central lateral nucleus thalamus

CLA:

Claustrum

CM:

Central medial nucleus thalamus

CP:

Caudoputamen

cpd:

Cerebral peduncle

CRH:

Corticotropin-releasing hormone

CS:

Superior central nucleus raphé

cst:

Corticospinal tract

CUN:

Cuneiform nucleus

DAB:

Diaminobenzidine

DMH:

Dorsomedial hypothalamic nucleus

DMHa:

Dorsomedial hypothalamic nucleus, anterior part

DMHp:

Dorsomedial hypothalamic nucleus, posterior part

DMHv:

Dorsomedial hypothalamic nucleus, ventral part

DR:

Dorsal nucleus raphé

DV:

Dorsoventral

fa:

Corpus callosum, anterior forceps

FEF:

Frontal eye field

FF:

Fields of Forel

FG:

Fluorogold

FL:

Flocculus

fr:

Fasciculus retroflexus

fx:

Columns of the fornix

GABA:

Gamma-aminobutyric acid

GP:

Globus pallidus

GU:

Gustatory area

Hcrt:

Hypocretin

HRP:

Horseradish peroxidase

ICe:

Inferior colliculus, external nucleus

ILA:

Infralimbic area

IMD:

Intermediodorsal nucleus thalamus

int:

Internal capsule

IP:

Intraperitoneal

IPN:

Interpeduncular nucleus

LD:

Lateral dorsal nucleus thalamus

LDT:

Laterodorsal tegmental nucleus

LG:

Lateral geniculate complex

LH:

Lateral habenula

LHA:

Lateral hypothalamic area

LM:

Lateral mammillary nucleus

LP:

Lateral posterior nucleus thalamus

MA:

Magnocellular nucleus

MCH:

Melanin-concentrating hormone

MD:

Mediodorsal nucleus thalamus

ME:

Median eminence

MG:

Medial geniculate complex

ML:

Mediolateral

MM:

Medial mammillary nucleus, body

MOp:

Primary somatomotor area

MOs:

Secondary somatomotor areas

MPN:

Medial preoptic nucleus

MPT:

Medial pretectal area

MRN:

Midbrain reticular nucleus

mtt:

Mammillothalamic tract

N:

Naïve rat

Nc:

Cage naïve rat

NLL:

Nucleus of the lateral lemniscus

Nn:

Night naïve rat

NOT:

Nucleus of the optic tract

NPC:

Nucleus of the posterior commissure

opt:

Optic tract

OT:

Olfactory tubercle

PAG:

Periaqueductal gray

PB:

Parabrachial nucleus

PBS:

Phosphate buffered saline

PBS-T:

Phosphate buffered saline with triton

PF:

Parafascicular nucleus

PFA:

Paraformaldehyde

PG:

Pontine gray

PH:

Posterior hypothalamic nucleus

PHA-L:

Phaseolus vulgaris leucoagglutinin

PIR:

Piriform area

PL:

Prelimbic area

pm:

Principal mammillary tract

PMd:

Dorsal premammillary nucleus

PMv:

Ventral premammillary nucleus

PO:

Posterior complex thalamus

POA:

Preoptic area

PP:

Peripeduncular nucleus

PPN:

Pedunculopontine nucleus

PPT:

Posterior pretectal nucleus

PR:

Perireuniens nucleus

PRC:

Precommissural nucleus, periaqueductal gray

PRN:

Pontine reticular nucleus

PSV:

Principal sensory nucleus of the trigeminal

PVH:

Paraventricular hypothalamic nucleus

PVT:

Paraventricular thalamic nucleus

py:

Pyramid

RE:

Nucleus reuniens

REa:

Nucleus reuniens, rostral division, anterior part

RH:

Rhomboid nucleus

RL:

Rostral linear nucleus raphé

RM:

Nucleus raphé magnus

RN:

Red nucleus

ROI:

Region of interest

RR:

Midbrain reticular nucleus, retrorubral area

RS:

Re-fed rat

RT:

Reticular nucleus thalamus

SC:

Superior colliculus

SCH:

Suprachiasmatic nucleus

SCig:

Superior colliculus, intermediate gray layer

SF:

Septofimbrial nucleus

SI:

Substantia innominata

sm:

Stria medullaris

SMT:

Submedial nucleus thalamus

SN:

Substantia nigra

SNr:

Substantia nigra, reticular part

SSp:

Primary somatosensory area

STN:

Subthalamic nucleus

SUM:

Supramammillary nucleus

SUMl:

Supramammillary nucleus, lateral part

T:

Teased rat

TT:

Tenia tecta

V3:

Third ventricle

V4:

Fourth ventricle

VAL:

Ventral anterior-lateral complex thalamus

VL:

Lateral ventricle

vlt:

Ventrolateral tract

VM:

Ventral medial nucleus thalamus

VMH:

Ventromedial hypothalamic nucleus

VPL:

Ventral posterolateral nucleus thalamus

VPM:

Ventral posteromedial nucleus thalamus

VTA:

Ventral tegmental area

ZI:

Zona incerta

ZIda:

Zona incerta, dopaminergic group

References

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  CAS  PubMed  Google Scholar 

  • Alhadeff AL, Rupprecht LE, Hayes MR (2012) GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153:647–658

    Article  CAS  PubMed  Google Scholar 

  • Bagaev V, Aleksandrov V (2006) Visceral-related area in the rat insular cortex. Auton Neurosci. 125:16–21.

    Article  CAS  PubMed  Google Scholar 

  • Bahring R, Meier RK, Dieringer N (1994) Unilateral ablation of the frontal eye field of the rat affects the beating field of ocular nystagmus. Exp Brain Res 98:391–400

    Article  CAS  PubMed  Google Scholar 

  • Bayer L, Risold PY, Griffond B, Fellmann D (1999) Rat diencephalic neurons producing melanin-concentrating hormone are influenced by ascending cholinergic projections. Neuroscience 91:1087–1101

    Article  CAS  PubMed  Google Scholar 

  • Bellinger LL, Bernardis LL (2002) The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiol Behav 76:431–442

    Article  CAS  PubMed  Google Scholar 

  • Bester H, Besson JM, Bernard JF (1997) Organization of efferent projections from the parabrachial area to the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 383:245–281

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319:218–245

    Article  CAS  PubMed  Google Scholar 

  • Bosman LW, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WH, Ju C, Gong W, Koekkoek SK, De Zeeuw CI (2011) Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 5:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34:4708–4727

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown RE, McKenna JT (2015) Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Front Neurol 6:135

    PubMed  PubMed Central  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635

    CAS  PubMed  Google Scholar 

  • Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25:2429–2433

    Article  CAS  PubMed  Google Scholar 

  • Canteras NS, Simerly RB, Swanson LW (1994) Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:41–79

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri A, Zangenehpour S, Rahbar-Dehgan F, Ye F (2000) Molecular maps of neural activity and quiescence. Acta Neurobiol Exp (Wars) 60:403–410

    CAS  Google Scholar 

  • Chometton S, Pedron S, Peterschmitt Y, Van Waes V, Fellmann D, Risold PY (2016) A premammillary lateral hypothalamic nuclear complex responds to hedonic but not aversive tastes in the male rat. Brain structure & function 221:2183–2208.

  • Cohen RA, Kaplan RF, Moser DJ, Jenkins MA, Wilkinson H (1999) Impairments of attention after cingulotomy. Neurology 53:819–824

    Article  CAS  PubMed  Google Scholar 

  • Conte WL, Kamishina H, Corwin JV, Reep RL (2008) Topography in the projections of lateral posterior thalamus with cingulate and medial agranular cortex in relation to circuitry for directed attention and neglect. Brain Res 1240:87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25:271–284

    Article  CAS  PubMed  Google Scholar 

  • Crowne DP, Richardson CM, Ward G (1983) Brief deprivation of vision after unilateral lesions of the frontal eye field prevents contralateral inattention. Science 220:527–530

    Article  CAS  PubMed  Google Scholar 

  • Cvetkovic V, Poncet F, Fellmann D, Griffond B, Risold PY (2003) Diencephalic neurons producing melanin-concentrating hormone are influenced by local and multiple extra-hypothalamic tachykininergic projections through the neurokinin 3 receptor. Neuroscience 119:1113–1145

    Article  CAS  PubMed  Google Scholar 

  • Dobbs LK, Cunningham CL (2014) The role of the laterodorsal tegmental nucleus in methamphetamine conditioned place preference and locomotor activity. Behav Brain Res 265:198–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M, Saper CB, Scammell TE (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662

    CAS  PubMed  Google Scholar 

  • Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R (2001) Orbitomedial prefrontal cortical projections to hypothalamus in the rat. J Comp Neurol 432:307–328

    Article  CAS  PubMed  Google Scholar 

  • Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363:177–196

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Horvath TL (2008) Neuronal control of energy homeostasis. FEBS Lett 582:132–141.

    Article  CAS  PubMed  Google Scholar 

  • Goforth PB, Leinninger GM, Patterson CM, Satin LS, Myers MG Jr (2014) Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci 34:11405–11415

    Article  PubMed  PubMed Central  Google Scholar 

  • Guandalini P (2001) The efferent connections to the thalamus and brainstem of the physiologically defined eye field in the rat medial frontal cortex. Brain Res Bull 54:175–186

    Article  CAS  PubMed  Google Scholar 

  • Hahn JD, Swanson LW (2010) Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 64:14–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn JD, Swanson LW (2015) Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat. Frontiers in systems neuroscience 9.

  • Han CJ, O’Tuathaigh CM, van Trigt L, Quinn JJ, Fanselow MS, Mongeau R, Koch C, Anderson DJ (2003) Trace but not delay fear conditioning requires attention and the anterior cingulate cortex. Proc Natl Acad Sci USA 100:13087–13092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan SF, Cornish JL, Goodchild AK (2013) Respiratory, metabolic and cardiac functions are altered by disinhibition of subregions of the medial prefrontal cortex. J Physiol 591:6069–6088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci USA 106:2418–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. J Comp Neurol 253:415–439

    Article  CAS  PubMed  Google Scholar 

  • Ito HT, Zhang SJ, Witter MP, Moser EI, Moser MB (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522:50–55

    Article  CAS  PubMed  Google Scholar 

  • Jankowski MM, Islam MN, Wright NF, Vann SD, Erichsen JT, Aggleton JP, O’Mara SM (2014) Nucleus reuniens of the thalamus contains head direction cells. eLife. doi: 10.7554/eLife.03075.

    PubMed  PubMed Central  Google Scholar 

  • Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16:1637–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings JH, Rizzi G, Stamatakis AM, Ung RL, Stuber GD (2013) The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341:1517–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BE, Hassani OK (2013) The role of Hcrt/Orx and MCH neurons in sleep-wake state regulation. Sleep 36:1769–1772

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaping D, Vinck M, Hutchison RM, Everling S, Womelsdorf T (2011) Specific contributions of ventromedial, anterior cingulate, and lateral prefrontal cortex for attentional selection and stimulus valuation. PLoS Biol 9:e1001224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King V, Corwin JV (1990) Neglect following unilateral ablation of the caudal but not the rostral portion of medial agranular cortex of the rat and the therapeutic effect of apomorphine. Behav Brain Res 37:169–184

    Article  CAS  PubMed  Google Scholar 

  • Kita T, Osten P, Kita H (2014) Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol 522:4043–4056

    Article  PubMed  PubMed Central  Google Scholar 

  • Konadhode RR, Pelluru D, Shiromani PJ (2014) Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 8:244

    PubMed  Google Scholar 

  • Kunzle H, Akert K (1977) Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J Comp Neurol 173:147–164

    Article  CAS  PubMed  Google Scholar 

  • Laque A, Zhang Y, Gettys S, Nguyen TA, Bui K, Morrison CD, Munzberg H (2013) Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action. Am J Physiol Endocrinol Metab 304:E999–E1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leichnetz GR, Gonzalo-Ruiz A (1987) Collateralization of frontal eye field (medial precentral/anterior cingulate) neurons projecting to the paraoculomotor region, superior colliculus, and medial pontine reticular formation in the rat: a fluorescent double-labeling study. Exp Brain Res 68:355–364

    Article  CAS  PubMed  Google Scholar 

  • Leinninger GM, Opland DM, Jo YH, Faouzi M, Christensen L, Cappellucci LA, Rhodes CJ, Gnegy ME, Becker JB, Pothos EN, Seasholtz AF, Thompson RC, Myers MG Jr (2011) Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab 14:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linke R, De Lima AD, Schwegler H, Pape HC (1999) Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: possible substrates of a subcortical visual pathway to the amygdala. J Comp Neurol 403:158–170

    Article  CAS  PubMed  Google Scholar 

  • May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378

    Article  PubMed  Google Scholar 

  • McHaffie JG, Stein BE (1982) Eye movements evoked by electrical stimulation in the superior colliculus of rats and hamsters. Brain Res 247:243–253

    Article  CAS  PubMed  Google Scholar 

  • McKenna JT, Vertes RP (2004) Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480:115–142

    Article  PubMed  Google Scholar 

  • Merchenthaler I, Lopez FJ, Negro-Vilar A (1993) Anatomy and physiology of central galanin-containing pathways. Prog Neurobiol 40:711–769

    Article  CAS  PubMed  Google Scholar 

  • Mitrofanis J (2005) Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130:1–15

    Article  CAS  PubMed  Google Scholar 

  • Moore T, Fallah M (2001) Control of eye movements and spatial attention. Proc Natl Acad Sci USA 98:1273–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mota-Ortiz SR, Sukikara MH, Bittencourt JC, Baldo MV, Elias CF, Felicio LF, Canteras NS (2012) The periaqueductal gray as a critical site to mediate reward seeking during predatory hunting. Behav Brain Res 226:32–40

    Article  PubMed  Google Scholar 

  • Munoz DP, Wurtz RH (1992) Role of the rostral superior colliculus in active visual fixation and execution of express saccades. J Neurophysiol 67:1000–1002

    CAS  PubMed  Google Scholar 

  • Naleid AM, Grace MK, Cummings DE, Levine AS (2005) Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 26:2274–2279

    Article  CAS  PubMed  Google Scholar 

  • O’Connor Eoin C, Kremer Y, Lefort S, Harada M, Pascoli V, Rohner C, Lüscher C (2015) Accumbal D1R Neurons Projecting to Lateral Hypothalamus Authorize Feeding. Neuron 88:553–564

    Article  PubMed  Google Scholar 

  • Oertel WH, Tappaz ML, Berod A, Mugnaini E (1982) Two-color immunohistochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta. Brain Res Bull 9:463–474

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Elsevier, Sydney

    Google Scholar 

  • Petrovich GD, Hobin MP, Reppucci CJ (2012) Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats. Neuroscience 224:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    CAS  PubMed  Google Scholar 

  • Riekkinen P Jr, Kuitunen J, Riekkinen M (1995) Effects of scopolamine infusions into the anterior and posterior cingulate on passive avoidance and water maze navigation. Brain Res 685:46–54

    Article  CAS  PubMed  Google Scholar 

  • Risold PY, Swanson LW (1995) Evidence for a hypothalamothalamocortical circuit mediating pheromonal influences on eye and head movements. Proc Natl Acad Sci USA 25:3898–3902

    Article  Google Scholar 

  • Risold PY, Fellmann D, Rivier J, Vale W, Bugnon C (1992) Immunoreactivities for antisera to three putative neuropeptides of the rat melanin-concentrating hormone precursor are coexpressed in neurons of the rat lateral dorsal hypothalamus. Neurosci Lett 136:145–149

    Article  CAS  PubMed  Google Scholar 

  • Risold PY, Canteras NS, Swanson LW (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:1–40

    Article  CAS  PubMed  Google Scholar 

  • Risold PY, Thompson RH, Swanson LW (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Rev 24:197–254

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA, Fuchs AF (1969) Eye movements evoked by stimulation of frontal eye fields. J Neurophysiol 32:637–648

    CAS  PubMed  Google Scholar 

  • Roncon CM, Almada RC, Maraschin JC, Audi EA, Zangrossi H Jr, Graeff FG, Coimbra NC (2015) Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter mu-opioid receptors. Neuropharmacology 99:620–626

    Article  CAS  PubMed  Google Scholar 

  • Sclafani A, Azzara AV, Touzani K, Grigson PS, Norgren R (2001) Parabrachial nucleus lesions block taste and attenuate flavor preference and aversion conditioning in rats. Behav Neurosci 115:920–933

    Article  CAS  PubMed  Google Scholar 

  • Shabani S, Foster R, Gubner N, Phillips TJ, Mark GP (2010) Muscarinic type 2 receptors in the lateral dorsal tegmental area modulate cocaine and food seeking behavior in rats. Neuroscience 170:559–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sita LV, Elias CF, Bittencourt JC (2003) Dopamine and melanin-concentrating hormone neurons are distinct populations in the rat rostromedial zona incerta. Brain Res 970:232–237

    Article  CAS  PubMed  Google Scholar 

  • Sita LV, Elias CF, Bittencourt JC (2007) Connectivity pattern suggests that incerto-hypothalamic area belongs to the medial hypothalamic system. Neuroscience 148:949–969

    Article  CAS  PubMed  Google Scholar 

  • Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol 271:473–492

    Article  CAS  PubMed  Google Scholar 

  • Stubblefield EA, Costabile JD, Felsen G (2013) Optogenetic investigation of the role of the superior colliculus in orienting movements. Behav Brain Res 255:55–63

    Article  PubMed  Google Scholar 

  • Stuesse SL, Newman DB (1990) Projections from the medial agranular cortex to brain stem visuomotor centers in rats. Exp Brain Res 80:532–544

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (2004) Brain maps: structure of the rat brain. Elsevier, New York

    Google Scholar 

  • Swanson LW, Sanchez-Watts G, Watts AG (2005) Comparison of melanin-concentrating hormone and hypocretin/orexin mRNA expression patterns in a new parceling scheme of the lateral hypothalamic zone. Neurosci Lett 387:80–84

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Jeffery G, Lieberman AR (1986) Subcortical afferent and efferent connections of the superior colliculus in the rat and comparisons between albino and pigmented strains. Exp Brain Res 62:131–142

    Article  CAS  PubMed  Google Scholar 

  • Thompson SM, Robertson RT (1987a) Organization of subcortical pathways for sensory projections to the limbic cortex. I. Subcortical projections to the medial limbic cortex in the rat. J Comp Neurol 265:175–188

  • Thompson SM, Robertson RT (1987b) Organization of subcortical pathways for sensory projections to the limbic cortex. II. Afferent projections to the thalamic lateral dorsal nucleus in the rat. J Comp Neurol 265:189–202

  • Thompson RH, Swanson LW (1998) Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat. Brain Res Brain Res Rev 27:89–118.

    Article  CAS  PubMed  Google Scholar 

  • Thompson RH, Swanson LW (2003) Structural characterization of a hypothalamic visceromotor pattern generator network. Brain Res Brain Res Rev 41:153–202.

    Article  CAS  PubMed  Google Scholar 

  • Trageser JC, Burke KA, Masri R, Li Y, Sellers L, Keller A (2006) State-dependent gating of sensory inputs by zona incerta. J Neurophysiol 96:1456–1463

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsumori T, Yokota S, Ono K, Yasui Y (2001) Organization of projections from the medial agranular cortex to the superior colliculus in the rat: a study using anterograde and retrograde tracing methods. Brain Res 903:168–176

    Article  CAS  PubMed  Google Scholar 

  • Ullah F, Dos Anjos-Garcia T, Dos Santos IR, Biagioni AF, Coimbra NC (2015) Relevance of dorsomedial hypothalamus, dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal gray matter in the organization of freezing or oriented and non-oriented escape emotional behaviors. Behav Brain Res 293:143–152

    Article  PubMed  Google Scholar 

  • Valdes JL, Sanchez C, Riveros ME, Blandina P, Contreras M, Farias P, Torrealba F (2010) The histaminergic tuberomammillary nucleus is critical for motivated arousal. Eur J Neurosci 31:2073–2085

    Article  PubMed  Google Scholar 

  • Van Horn MR, Waitzman DM, Cullen KE (2013) Vergence neurons identified in the rostral superior colliculus code smooth eye movements in 3D space. J Neurosci 33:7274–7284

    Article  PubMed  Google Scholar 

  • Vaughan JM, Fischer WH, Hoeger C, Rivier J, Vale W (1989) Characterization of melanin-concentrating hormone from rat hypothalamus. Endocrinology 125:1660–1665

    Article  CAS  PubMed  Google Scholar 

  • Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Verret L, Fort P, Gervasoni D, Leger L, Luppi PH (2006) Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J Comp Neurol 495:573–586

    Article  CAS  PubMed  Google Scholar 

  • Viau V, Sawchenko PE (2002) Hypophysiotropic neurons of the paraventricular nucleus respond in spatially, temporally, and phenotypically differentiated manners to acute vs. repeated restraint stress: rapid publication. J Comp Neurol 445:293–307

    Article  PubMed  Google Scholar 

  • Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37:475–524

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from the French Ministère de la Recherche et de la Technologie (EA 3922) and from the Région de Franche-Comté. The authors want to thank Frances Thivet for the help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Risold.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Movie S1 During the feeding procedure, the teased rat previously deprived of food during 24h spent most of the one hour experiment trying to reach the food inside the meshed box while the control rat rested in the cage. (MOV 2258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chometton, S., Charrière, K., Bayer, L. et al. The rostromedial zona incerta is involved in attentional processes while adjacent LHA responds to arousal: c-Fos and anatomical evidence. Brain Struct Funct 222, 2507–2525 (2017). https://doi.org/10.1007/s00429-016-1353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1353-3

Keywords

Navigation