Skip to main content

Advertisement

Log in

Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer’s disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrous DN, Wojtowics JM (2008) 21 Neurogenesis and hippocampal memory system. Cold Spring Harb Mongraph Arch North Am 52:445–461

    Google Scholar 

  • Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727

    Article  CAS  PubMed  Google Scholar 

  • Antonarakis SE, Lyle R, Chrast R, Scott HS (2001) Differential gene expression studies to explore the molecular pathophysiology of Down syndrome. Brain Res Brain Res Rev 36:265–274

    Article  CAS  PubMed  Google Scholar 

  • Ash JA, Velazquez R, Kelley CM, Powers BE, Strawderman M, Mufson EJ et al (2014) Perinatal choline supplementation improves spatial mapping and increases cholinergic basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiol Dis 70:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berardi A, Parasuraman R, Haxby JV (2001) Overall vigilance and sustained attention decrements in healthy aging. Exp Aging Res 27:19–39

    Article  CAS  PubMed  Google Scholar 

  • Bianchi P, Ciani E, Guidi S, Trazzi S, Felice D, Grossi G et al (2010) Early pharmacotherapy restores neurogenesis and cognitive performance in the Ts65Dn mouse model for Down syndrome. J Neurosci 30:8769–8779

    Article  CAS  PubMed  Google Scholar 

  • Bowes C, Li T, Frankel WN, Danciger M, Coffin JM, Applebury ML, Farber DB (1993) Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci USA 90:2955–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JH, Johnson MH, Paterson SJ, Gilmore R, Longhi E, Karmiloff-Smith A (2003) Spatial representation and attention in toddlers with Williams syndrome and Down syndrome. Neuropsychologia 41:1037–1046

    Article  PubMed  Google Scholar 

  • Capone GT (2001) Down syndrome: advances in molecular biology and the neurosceinces. J Dev Behav Pediatr 22:40–59

    Article  CAS  PubMed  Google Scholar 

  • Casanova MF, Walker LC, Whitehouse PJ, Price DL (1985) Abnormalities of the nucleus basalis in Down’s syndrome. Ann Neurol 18:310–313

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2006) Improved national prevalence estimates for 18 selected major birth defects—United States, 1999–2001. Morb Mortal Wkly Rep 54:1301–1305

    Google Scholar 

  • Clark D, Wilson GN (2003) Behavioral assessment of children with Down syndrome using the Reiss psychopathology scale. Am J Med Genet A 118:210–216

    Article  Google Scholar 

  • Colas D, Chuluun B, Warrier D, Blank M, Wetmore DZ, Buckmaster P, Garner CC, Heller HC (2013) Short-term treatment with the GABAA receptor antagonist pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model of Down’s syndrome. Br J Pharmacol 169(5):963–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contestabile A, Fila T, Bartesaghi R, Contestabile A, Ciani E (2006) Choline acetyltransferase activity at different ages in brain of Ts65Dn mice, an animal model for Down’s syndrome and related neurodegenerative diseases. J Neurochem 97(2):515–526

    Article  CAS  PubMed  Google Scholar 

  • Cooper JD, Salehi A, Delcroix JD, Howe CL, Belichenko PV, Chua-Couzens J et al (2001) Failed retrograde transport of NGF in a mouse model of Down’s syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc Natl Acad Sci USA 98:10439–10444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish K, Scerif G, Karmiloff-Smith A (2007) Tracing syndrome-specific trajectories of attention across the lifespan. Cortex 43:672–685

    Article  PubMed  Google Scholar 

  • Das I, Reeves R (2011) The use of mouse models to understand and improve cognitive deficits in Down syndrome. Dis Model Mech 4:596–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davisson MT, Schmidt C, Akeson EC (1990) Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog Clin Biol Res 360:263–280

    CAS  PubMed  Google Scholar 

  • Davisson MT, Schmidt C, Reeves RH, Irving NG, Akeson EC, Harris BS, Bronson RT (1993) Segmental trisomy as a mouse model for Down syndrome. Prog Clin Biol Res 384:117–133

    CAS  PubMed  Google Scholar 

  • Della Sala S, Laiacona M, Spinnler H, Ubezio C (1992) A cancellation test: its reliability in assessing attentional deficits in Alzheimer’s disease. Psychol Med 22:885–901

    Article  CAS  PubMed  Google Scholar 

  • Driscoll LL, Carroll JC, Moon J, Crnic LS, Levitsky DA, Strupp BJ (2004) Impaired sustained attention and error-induced stereotypy in the aged Ts65Dn mouse: a mouse model of Down syndrome and Alzheimer’s disease. Behav Neurosci 118:1196–1205

    Article  PubMed  Google Scholar 

  • Faizi M, Bader PL, Tun C, Encarnacion A, Kleschevnikov A, Belichenko P, Saw N, Priestly M, Tsien RW, Mobley WC, Shamloo M (2011) Comprehensive behavioral phenotyping on Ts65Dn mouse model of Down syndrome: activation of β1-adrenergic receptor by xamoterol as a potential cognitive enhancer. Neurobiol Dis 43(2):397–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JK (2001) Seclective attention in Alzheimer’s disease. Front Biosci 6:D135–D153

    CAS  PubMed  Google Scholar 

  • Fuchs C, Ciani E, Guidi S, Trazzi S, Bartesaghi R (2012) Early-occurring proliferation defects in peripheral tissues of the Ts65Dn mouse model of Down syndrome are associated with patched1 over expression. Lab Invest 92:1648–1660

    Article  CAS  PubMed  Google Scholar 

  • Granholm AC, Sanders LA, Crnic LS (2000) Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down’s syndrome. Exp Neurol 161:647–663

    Article  CAS  PubMed  Google Scholar 

  • Granholm AC, Ford KA, Hyde LA, Bimonte HA, Hunter CL, Nelson M et al (2002) Estrogen restores cognition and cholinergic phenotype in an animal model of Down syndrome. Physiol Behav 77(2–3):371–385

    Article  CAS  PubMed  Google Scholar 

  • Greenwood PM, Parasuraman R, Alexander GE (1997) Controlling the focus of spatial attention during visual search: effects of advanced aging and Alzheimer disease. Neuropsychology 11:3–12

    Article  CAS  PubMed  Google Scholar 

  • Guidi S, Ciani E, Bonasoni P, Santini D, Bartesaghi R (2011) Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with Down syndrome. Brain Pathol 21:361–373

    Article  PubMed  Google Scholar 

  • Gundersen HJ (1988) The nucleator. J Microsc 151:3–21

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJ, Jensen EB, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microsc 193:199–211

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73

    Article  CAS  PubMed  Google Scholar 

  • Holtzman DM, Santucci D, Kilbridge J, Chua-Couzens J, Fontana DJ, Daniels SE et al (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proc Natl Acad Sci USA 93:13333–13338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde LA, Crnic LS (2001) Age-related deficits in context discrimination learning in Ts65Dn mice that model Down syndrome and Alzheimer’s disease. Behav Neurosci 115:1239–1246

    Article  CAS  PubMed  Google Scholar 

  • Hyde LA, Frisone DF, Crnic LS (2001) Ts65Dn mice, a model for Down syndrome, have deficits in context discrimination learning suggesting impaired hippocampal function. Behav Brain Res 118:53–60

    Article  CAS  PubMed  Google Scholar 

  • Iacono D, O’Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G et al (2008) Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67(6):578–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Isacson O, Seo H, Lin L, Albeck D, Granholm AC (2002) Alzheimer’s disease and Down’s syndrome: roles of APP, trophic factors and ACh. Trends Neurosci 25:79–84

    Article  CAS  PubMed  Google Scholar 

  • Jones DN, Barnes JC, Kirkby DL, Higgins GA (1995) Age-associated impairments in a test of attention: evidence for involvement of cholinergic systems. J Neurosci 15:7282–7292

    CAS  PubMed  Google Scholar 

  • Kaur G, Sharma A, Xu W, Gerum S, Alldred MJ, Subbanna S, Basavarajappa BS, Pawlik M, Ohno M, Ginsberg SD et al (2014) Glutamatergic transmission aberration: a major cause of behavioral deficits in a murine model of Down’s syndrome. J Neurosci 34:5099–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley CM, Powers BE, Velazquez R, Ash JA, Ginsberg SD, Strupp BJ, Mufson EJ (2014a) Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice. J Comp Neurol 522:1390–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley CM, Powers BE, Velazquez R, Ash JA, Ginsberg SD, Strupp BJ, Mufson EJ (2014b) Sex differences in the cholinergic basal forebrain in the Ts65Dn mouse model of Down syndrome and Alzheimer’s disease. Brain Pathol 24:33–44

    Article  CAS  PubMed  Google Scholar 

  • Kelley CM, Ash JA, Powers BE, Velazquez R, Alldred MJ, Ikonomovic MD, Ginsberg SD, Strupp BJ, Mufson EJ (2016) Effects of maternal choline supplementation on the septohippocampal cholinergic system in the Ts65Dn mouse model of Down syndrome. Curr Alzheimer Res 13(1):77–89

    Google Scholar 

  • Krinsky-McHale SJ, Devenny DA, Kittler P, Silverman W (2008) Selective attention deficits associated with mild cognitive impairment and early stage Alzheimer’s disease in adults with Down syndrome. Am J Ment Retard 113:369–386

    Article  PubMed  Google Scholar 

  • Lai F, Williams RS (1989) A prospective study of Alzheimer disease in Down syndrome. Arch Neurol 46:849–853

    Article  CAS  PubMed  Google Scholar 

  • Leuner B, Gould E, Shors TJ (2006) Is there a link between adult neurogenesis and learning? Hippocampus 16:216–224

    Article  PubMed  Google Scholar 

  • Levinoff EJ, Li KZ, Murtha S, Chertkow H (2004) Selective attention impairments in Alzheimer’s disease: evidence for dissociable components. Neuropsychology 18:580–588

    Article  PubMed  Google Scholar 

  • Lledo P-M, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    Article  CAS  PubMed  Google Scholar 

  • Lockrow J, Prakasam A, Huang P, Bimonte-Nelson H, Sambamurti K, Granholm AC (2009) Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model. Exp Neurol 216:278–289

    Article  CAS  PubMed  Google Scholar 

  • Lockrow J, Boger H, Bimonte-Nelson H, Granholm AC (2011) Effects of long-term memantine on memory and neuropathology in Ts65Dn mice, a model for Down syndrome. Behav Brain Res 221:610–622

    Article  CAS  PubMed  Google Scholar 

  • Mann DM (1988) Alzheimer’s disease and Down’s syndrome. Histopathology 13:125–137

    Article  CAS  PubMed  Google Scholar 

  • Mann DM, Lincoln J, Yates PO, Brennan CM (1980) Monoamine metabolism in Down syndrome. Lancet 2:1366–1367

    Article  CAS  PubMed  Google Scholar 

  • Mann DM, Yates PO, Marcyniuk B, Ravindra CR (1986) The topography of plaques and tangles in Down’s syndrome patients of different ages. Neuropathol Appl Neurobiol 12:447–457

    Article  CAS  PubMed  Google Scholar 

  • McGaughy J, Sarter M (1995) Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology 117:340–357

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AL (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:185–201

    Article  Google Scholar 

  • Moon J, Chen M, Gandhy SU, Strawderman M, Levitsky DA, Maclean KN, Strupp BJ (2010) Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome. Behav Neurosci 124:346–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mufson EJ, Bothwell M, Kordower JH (1989) Loss of nerve growth factor receptor-containing neurons in Alzheimer’s disease: a quantitative analysis across subregions of the basal forebrain. Exp Neurol 105:221–232

    Article  CAS  PubMed  Google Scholar 

  • Mufson EJ, Ma SY, Cochran EJ, Bennett DA, Beckett LA, Jaffar S, Saragovi HU, Kordower JH (2000) Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 427:19–30

    Article  CAS  PubMed  Google Scholar 

  • Muir JL, Fischer W, Bjorklund A (1999) Decline in visual attention and spatial memory in aged rats. Neurobiol Aging 20:605–615

    Article  CAS  PubMed  Google Scholar 

  • Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GL, Wides R et al (2002) A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296:1661–1671

    Article  CAS  PubMed  Google Scholar 

  • Parasuraman R, Giambra L (1991) Skill development in vigilance: effects of event rate and age. Psychol Aging 6:155–169

    Article  CAS  PubMed  Google Scholar 

  • Parker SE, Mai CT, Canfield M, Rickard R, Wang Y, Meyer RE et al (2010) Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A Clin Mol Teratol 88(12):1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Patterson D, Costa ACS (2005) Down syndrome and genetics—a case of linked histories. Nat Rev Genet 6:137–147

    Article  CAS  PubMed  Google Scholar 

  • Pignatti R, Rabuffetti M, Imbornone E, Mantovani F, Alberoni M, Farina E, Canal N (2005) Specific impairments of selective attention in mild Alzheimer’s disease. J Clin Exp Neuropsychol 27:436–448

    Article  PubMed  Google Scholar 

  • Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS et al (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184

    Article  CAS  PubMed  Google Scholar 

  • Rueda N, Florez J, Martinez-Cue C (2012) Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012:584071

    PubMed  PubMed Central  Google Scholar 

  • Rye DB, Wainer BH, Mesulam MM, Mufson EJ, Saper CB (1984) Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 13:627–643

    Article  CAS  PubMed  Google Scholar 

  • Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS et al (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51:29–42

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Brain Res Rev 23:28–46

    Article  CAS  PubMed  Google Scholar 

  • Sendera TJ, Ma SY, Jaffar S, Kozlowski PB, Kordower JH, Mawal Y et al (2000) Reduction in TrkA-immunoreactive neurons is not associated with an overexpression of galaninergic fibers within the nucleus basalis in Down’s syndrome. J Neurochem 74:1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Seo H, Isacson O (2005) Abnormal APP, cholinergic and cognitive function in Ts65Dn Down’s model mice. Exp Neurol 193:469–480

    Article  CAS  PubMed  Google Scholar 

  • Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  CAS  PubMed  Google Scholar 

  • Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV, Galletly NP, Isacson O, Svendsen CN (1990) Survival of adult basal forebrain cholinergic neurons after loss of target neurons. Science 247:338–342

    Article  CAS  PubMed  Google Scholar 

  • Sturgeon X, Gardiner KJ (2011) Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions. Mamm Genome 22:261–271

    Article  PubMed  Google Scholar 

  • Tomporowski PD, Hayden AM, Applegate B (1990) Effects of background event rate on sustained attention of mentally retarded and nonretarded adults. Am J Ment Retard 94:499–508

    CAS  PubMed  Google Scholar 

  • Velazquez R, Ash JA, Powers BE, Kelley CM, Strawderman M, Luscher ZI et al (2013) Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 58:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser FE, Aldenkamp AP, van Huffelen AC, Kuilman M, Overweg J, van Wijk J (1997) Prospective study of the prevalence of Alzheimer-type dementia in institutionalized individuals with Down syndrome. Am J Ment Retard 101:400–412

    CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Wilding J, Cornish K, Munir F (2002) Further delineation of the executive deficit in males with fragile-X syndrome. Neuropsychologia 40:1343–1349

    Article  PubMed  Google Scholar 

  • Wisniewski KE, Dalton AJ, McLachlan C, Wen GY, Wisniewski HM (1985a) Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35:957–961

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski KE, Wisniewski HM, Wen GY (1985b) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17:278–282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by National Institute of Child Health and Human Development, Grant number HD057564 (to BJS, EJM, SDG); National Institute on Aging, Grant numbers AG014449 (to EJM, SDG) and AG043375 (EJM & SDG); the Alzheimer’s Association, Grant number IIRG-12-237253 (to SDG); and the National Institute of Health, Grant number HD45224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. Strupp.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

B. E. Powers and R. Velazquez are the first co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powers, B.E., Velazquez, R., Kelley, C.M. et al. Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome. Brain Struct Funct 221, 4337–4352 (2016). https://doi.org/10.1007/s00429-015-1164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1164-y

Keywords

Navigation