Skip to main content
Log in

Voluntary inhibition of pain avoidance behavior: an fMRI study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Behavioral inhibition has classically been considered to rely upon a neural network centered at the right inferior frontal cortex [rIFC; Aron et al. (8:170–177, 2004; 18:177–185, 2014)]. However, the vast majority of inhibition studies have entailed exogenous stop signals instructing participants to withhold responding. More recent work has begun to examine the neural underpinnings of endogenous inhibition, revealing a distinct cortical basis in the dorsal fronto-median cortex [dFMC; Brass and Haggard (27:9141–9145, 2007); Kühn et al. (30:2834–3843, 2009)]. Yet, contrary to everyday experiences of voluntary behavioral suppression, the paradigms employed to investigate action inhibition have thus far been somewhat artificial, and involve little persuasive motivation to act. Accordingly, the present fMRI study seeks to compare and contrast intentional with instructed inhibition in a novel pain paradigm that recruits ‘hot’ incentive response systems. Participants received increasing thermal stimulation to their inner wrists, and were required to occasionally withhold their natural impulse to withdraw from the compelling pain sensation at peak temperature, in both instructed and free-choice conditions. Consistent with previous research, we observed inhibition-related activity in the dFMC and the rIFC. However, these regions displayed equivalent activation levels for both inhibition types. These data extend previous research by demonstrating that under ecologically valid conditions with a strong motivation to act, both stopping networks operate in concert to enable suppression of unwanted behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We use the term ‘endogenous’ synonymously with ‘voluntary’ and ‘intentional’ to denote an internal locus of the decision to perform or withhold an action.

  2. This temperature is henceforth referred to as the individual participant’s tolerance threshold.

  3. A similar pattern of results was observed with a spherical ROI centered on the peak amPFC coordinate derived from the present study. However, these results are not displayed here due to the non-independence of ROI selection and analysis.

  4. Previous studies employed either a modified version of the ‘Libet task’ (Brass and Haggard 2007) in which self-paced button presses are occasionally omitted, or a ‘ramp task’ (Kühn et al 2009), also requiring participants to occasionally withhold from responding.

References

  • Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J Neurosci Off J Soc Neurosci 26:2424–2433

    Article  CAS  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177

    Article  PubMed  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2014) Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 18(4):177–185

    Article  PubMed  Google Scholar 

  • Baumeister RF, Vohs KD, Tice DM (2007) The strength model of self-control. Curr Dir Psychol Sci 16(6):351–355

    Article  Google Scholar 

  • Brass M, Haggard P (2007) To do or not to do: the neural signature of self-control. J Neurosci Off J Soc Neurosci 27(34):9141–9145

    Article  CAS  Google Scholar 

  • Brass M, Haggard P (2008) The what, when, whether model of intentional action. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 14:319–325

    Google Scholar 

  • Brass M, Haggard P (2010) The hidden side of intentional action: the role of the anterior insular cortex. Brain Struct Funct 214:603–610

    Article  PubMed  Google Scholar 

  • Brass M, Derrfuss J, von Cramon DY (2005) The inhibition of imitative and overlearned repsonses: a functional double dissociation. Neuropsychologia 43:89–98

    Article  PubMed  Google Scholar 

  • Brass M, Ruby P, Spengler S (2009) Inhibition of imitative behavior and social cognition. Philos Trans R Soc Biol Sci 364:2359–2367

    Article  Google Scholar 

  • Brett M, Anton JLL, Valabregue R, Poline JBB (2002). Region of interest analysis using an SPM toolbox. Abstract presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan, June 2–6, 2002. In: NeuroImage (Vol. 16, p. abstract 497)

  • Brody AL, Mandelkern MA, Olmstead RE, Jou J, Tiongson E, Allen V, Cohen MS (2007) Neural substrates of resisting craving during cigarette cue exposure. Biol Psychiatry 62:642–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W, George JS, Verbruggen F, Chambers CD, Aron AR (2012) The role of the right presupplementary motor area in stopping action: two studies with event-related transcranial magnetic stimulation. J Neurophysiol 108(2):380–389

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell BA, Misanin JR (1969) Basic drives. Annu Rev Psychol 20:57–84

    Article  Google Scholar 

  • Campbell-Meiklejohn DK, Woolrich MW, Passingham RE, Rogers RD (2008) Knowing when to stop: the brain mechanisms of chasing losses. Biol Psychiatry 63:293–300

    Article  PubMed  Google Scholar 

  • Chikazoe J, Konishi S, Asari T, Jimura K, Miyashita Y (2007) Activation of right inferior frontal gyrus during response inhibition across response modalities. J Cogn Neurosci 19:69–80

    Article  PubMed  Google Scholar 

  • Chikazoe J, Jimura K, Hirose S, Yamashita K, Miyashita Y, Konishi S (2009) Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. J Neurosci Off J Soc Neurosci 29:15870–15877

    Article  CAS  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Elliot AJ (2006) The hierarchical model of approach-avoidance motivation. Motiv Emot 30(2):111–116

    Article  Google Scholar 

  • Filevich E, Kühn S, Haggard P (2012) Intentional inhibition in human action: the power of “no”. Neurosci Biobehav Rev 36(4):1107–1118

    Article  PubMed  Google Scholar 

  • Forstmann BU, Jahfari S, Scholte HS, Wolfensteller U, van den Wildenberg WPM, Ridderinkhof KR (2008) Function and structure of the right inferior frontal cortex predict individual differences in response inhibition: a model-based approach. J Neurosci Off J Soc Neurosci 28:9790–9796

    Article  CAS  Google Scholar 

  • Friston KJ, Frith CD, Frackowiak RS, Turner R (1995) Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage 2(2):166–172

    Article  CAS  PubMed  Google Scholar 

  • Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci USA 96:8301–8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garavan H, Ross TJ, Murphy K, Roche AP, Stein EA (2002) Dissociable executive functions in the dynamic control of behavior: inhibition, error detection and correction. NeuroImage 17:1820–1829

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Larrea L, Peyron R (2013) Pain matrices and neuropathic pain matrices: a review. Pain 154(Suppl 1):S29–S43 (Melzack 1990)

    Article  PubMed  Google Scholar 

  • Haggard P (2008) Human volition: towards a neuroscience of will. Nat Rev Neurosci 9(12):934–946

    Article  CAS  PubMed  Google Scholar 

  • Herz DM, Christensen MS, Bruggemann N, Hulme OJ, Ridderinkhof KR, Madsen KH, Siebner HR (2014) Motivational tuning of fronto-subthalamic connectivity facilitates control of action impulses. J Neurosci 34(9):3210–3217

    Article  CAS  PubMed  Google Scholar 

  • Hodgson T, Chamberlain M, Parris B, James M, Gutowski N, Husain M, Kennard C (2007) The role of the ventrolateral frontal cortex in inhibitory oculomotor control. Brain J Neurol 130:1525–1537

    Article  Google Scholar 

  • Ingvar M (1999) Pain and functional imaging. Philos Trans R Soc Lond 354(1387):1347–1358

    Article  CAS  Google Scholar 

  • Johansen-Berg H, Behrens TEJ, Robson MD, Drobnjak I, Rushworth MFS, Brady JM, Matthews PM (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci USA 101(36):13335–13340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MK, Raye CL, Mitchell KJ, Touryan SR, Greene EJ, Nolen-Hoeksema S (2006) Dissociating medial frontal and posterior cingulate activity during self-reflection. Soc Cogn Affect Neurosci 1:56–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12(5):535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kühn S, Haggard P, Brass M (2009) Intentional inhibition: how the “veto-area” exerts control. Hum Brain Mapp 30(9):2834–2843

    Article  PubMed  Google Scholar 

  • Kühn S, Gallinat J, Brass M (2011) “Keep calm and carry on”: structural correlates of expressive suppression of emotions. PLoS One 6:e16569

    Article  PubMed  PubMed Central  Google Scholar 

  • Kühn S, Haggard P, Brass M (2014) Differences between endogenous and exogenous emotion inhibition in the human brain. Brain Struct Funct 219(3):1129–1138

    Article  PubMed  Google Scholar 

  • Lynn MT, Muhle-Karbe PS, Brass M (2014) Controlling the self: the role of the dorsal frontomedian cortex in intentional inhibition. Neuropsychologia 65:247–254

    Article  PubMed  Google Scholar 

  • Metcalfe J, Mischel W (1999) A hot/cool-system analysis of delay of gratification: dynamics of willpower. Psychol Rev 106(1):3–19

    Article  CAS  PubMed  Google Scholar 

  • Mischel W, Ayduk O, Berman MG, Casey BJ, Gotlib IH, Jonides J, Shoda Y (2011) “Willpower” over the life span: decomposing self-regulation. Soc Cogn Affect Neurosci 6(2):252–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell JP, Banaji MR, Macrae CN (2005) The link between social cognition and self-referential thought in the medial prefrontal cortex. J Cogn Neurosci 17:1306–1315

    Article  PubMed  Google Scholar 

  • Morsella E (2005) The function of phenomenal states: supramodular interaction theory. Psychological Review 112(4):1000–1021

    Article  PubMed  Google Scholar 

  • Mueller V, Brass M, Waszak F, Prinz W (2007) The role of the preSMA and the rostral cingulate zone in internally selected actions. NeuroImage 37(4):1354–1361

    Article  PubMed  Google Scholar 

  • Muraven M (2010) Practicing self-control lowers the risk of smoking lapse. Psychol Addict Behav 24(3):446–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Muraven M, Baumeister RF (2000) Self-regulation and depletion of limited resources: does self-control resemble a muscle? Psychol Bull 126(2):247–259

    Article  CAS  PubMed  Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Peyron R, Laurent B, García-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin Clin Neurophysiol 30(5):263–288

    Article  CAS  Google Scholar 

  • Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science (N Y) 277:968–971

    Article  CAS  Google Scholar 

  • Swann NC, Cai W, Conner CR, Pieters TA, Claffey MP, George JS, Aron AR, Tandon N (2012) Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity. Neuroimage 59(3):2860–2870

    Article  PubMed  PubMed Central  Google Scholar 

  • Tangney JP, Baumeister RF, Boone AL (2004) High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. J Personal 72(2):271–324

    Article  Google Scholar 

  • Towse JN, Neil D (1998) Analyzing human random generation behavior: A review of methods used and a computer program for describing performance. Behav Res Methods Instrum Comput 30(4):583–591

    Article  Google Scholar 

  • Verbruggen F, Logan GD (2008) Response inhibition in the stop-signal paradigm. Trends Cogn Sci 12:418–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Cohen JD (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science (N Y) 303:1162–1167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pieter Vandemaele for technical support and Paul S. Muhle-Karbe for helpful comments on the manuscript. This work was supported by the European Science Foundation’s EUROVETO project (09-ECRP-020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret T. Lynn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynn, M.T., Demanet, J., Krebs, R.M. et al. Voluntary inhibition of pain avoidance behavior: an fMRI study. Brain Struct Funct 221, 1309–1320 (2016). https://doi.org/10.1007/s00429-014-0972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0972-9

Keywords

Navigation