Skip to main content
Log in

Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The medulla oblongata is the caudal portion of the vertebrate hindbrain. It contains major ascending and descending fiber tracts as well as several motor and interneuron populations, including neural centers that regulate the visceral functions and the maintenance of bodily homeostasis. In the avian embryo, it has been proposed that the primordium of this region is subdivided into five segments or crypto-rhombomeres (r7–r11), which were defined according to either their parameric position relative to intersomitic boundaries (Cambronero and Puelles, in J Comp Neurol 427:522–545, 2000) or a stepped expression of Hox genes (Marín et al., in Dev Biol 323:230–247, 2008). In the present work, we examine the implied similar segmental organization of the mouse medulla oblongata. To this end, we analyze the expression pattern of Hox genes from groups 3 to 8, comparing them to the expression of given cytoarchitectonic and molecular markers, from mid-gestational to perinatal stages. As a result of this approach, we conclude that the mouse medulla oblongata is segmentally organized, similarly as in avian embryos. Longitudinal structures such as the nucleus of the solitary tract, the dorsal vagal motor nucleus, the hypoglossal motor nucleus, the descending trigeminal and vestibular columns, or the reticular formation appear subdivided into discrete segmental units. Additionally, our analysis identified an internal molecular organization of the migrated pontine nuclei that reflects a differential segmental origin of their neurons as assessed by Hox gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

5:

Trigeminal motor nucleus

6:

Abducens motor nucleus

6n:

Abducens nerve fibers

7:

Facial motor nucleus

7asc:

Ascending facial nerve fibers

7g:

Facial nerve genus

7n:

Descending facial nerve fibers

10:

Dorsal vagal motor nucleus

10n:

Vagal nerve fibers

12:

Hypoglossal motor nucleus

12n:

Hypoglossal nerve fibers

Amb:

Ambiguus motor nucleus

AP:

Area postrema

DC:

Dorsal cochlear nucleus

dcn:

Dorsal column nuclei

ECn:

External cuneate nucleus

Gi:

Gigantocellular reticular nucleus

IO:

Inferior olive

IRt:

Intermediate reticular nucleus

LRt:

Lateral reticular nucleus

MdV:

Ventral medullary reticular nucleus

MdD:

Dorsal medullary reticular nucleus

MVe:

Medial vestibular nucleus

mlf:

Medial longitudinal fascicle

PCRt:

Parvicellular reticular nucleus

pd:

Pyramidal decussation

Pn:

Basilar pontine nuclei

PnC:

Caudal pontine reticular nucleus

PnR:

Pontine raphe nucleus

Po:

Periolivary region

PPnR:

Prepontine raphe nucleus

Pr:

Prepositus nucleus

r:

Rhombomere

RAmb:

Retroambiguus nucleus

RMgV:

Raphe magnus nucleus, ventral part

RMgD:

Raphe magnus nucleus, dorsal part

Ro:

Roller nucleus

ROb:

Raphe obscurus nucleus

RPa:

Raphe pallidus nucleus

RtTg:

Reticular tegmental nucleus

RVL:

Rostroventrolateral reticular nucleus

sc:

Spinal cord

Sol:

Nucleus of the solitary tract

Sp5I:

Interpolar trigeminal nucleus

Sp5C:

Caudal trigeminal nucleus

SpVe:

Spinal vestibular nucleus

tz:

Trapezoid body

vh:

Ventral horn

References

  • Aldes LD (1995) Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat. J Comp Neurol 353:89–108

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Merchán P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R, Ferrán JL, Martínez-de-la-Torre M, Puelles L (2013) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 218:1229–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amat JA (1986) Compartimentación y dinamica neurogenética del tubo neuronal del embrion de pollo. Manifestación heterocrónica del plan estructural del neuroeje. Dissertation, University of Murcia, Spain

  • Ashwell KW, Hardman CD, Paxinos G (2006) Cyto- and chemoarchitecture of the sensory trigeminal nuclei of the echidna, platypus and rat. J Chem Neuroanat 31:81–107

    Article  CAS  PubMed  Google Scholar 

  • Behringer RR, Crotty DA, Tennyson VM, Brinster RL, Palmiter RD, Wolgemuth DJ (1993) Sequences 5′ of the homeobox of the Hox-1.4 gene direct tissue-specific expression of lacZ during mouse development. Development 117:823–833

    CAS  PubMed  Google Scholar 

  • Bergquist H (1952) Studies on the cerebral tube in vertebrates. The neuromeres. Acta Zool 33:117–187

    Article  Google Scholar 

  • Borday C, Vias C, Autran S, Thoby-Brisson M, Champagnat J, Fortin G (2006) The pre-Bötzinger oscillator in the mouse embryo. J Physiol Paris 100:284–289

    Article  CAS  PubMed  Google Scholar 

  • Boulet AM, Capecchi MR (1996) Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev Biol 177:232–249

    Article  CAS  PubMed  Google Scholar 

  • Breier G, Dressler GR, Gruss P (1988) Primary structure and developmental expression pattern of Hox 3.1, a member of the murine Hox 3 homeobox gene cluster. EMBO J 7:1329–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545

    Article  CAS  PubMed  Google Scholar 

  • Capecchi MR (1997) Hox genes and mammalian development. Cold Spring Harb Symp Quant Biol 62:273–281

    Article  CAS  PubMed  Google Scholar 

  • Cheung CC, Hohmann JG, Clifton DK, Steiner RA (2001) Distribution of galanin messenger RNA-expressing cells in murine brain and their regulation by leptin in regions of the hypothalamus. Neuroscience 103:423–432

    Article  CAS  PubMed  Google Scholar 

  • Clarke JD, Lumsden A (1993) Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118:151–162

    CAS  PubMed  Google Scholar 

  • Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623

    Article  CAS  PubMed  Google Scholar 

  • Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M (2013) Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 9:e1003249. doi:10.1371/journal.pgen.1003249

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz C, Puelles L, Marín F, Glover JC (1998) The relationship between rhombomeres and vestibular neuron populations as assessed in quail-chicken chimeras. Dev Biol 202:14–28

    Article  PubMed  Google Scholar 

  • Duchcherer M, Baghdadwala MI, Paramonov J, Wilson RJA (2013) Localization of essential rhombomeres for respiratory rhythm generation in bullfrog tadpoles using a binary search algorithm: rhombomere 7 is essential for the gill rhythm and suppresses lung bursts before metamorphosis. Dev Neurobiol 73:888–898

    Article  PubMed  Google Scholar 

  • Dun SL, Castellino SJ, Yang J, Chang JK, Dun NJ (2001) Cocaine- and amphetamine-regulated transcript peptide-immunoreactivity in dorsal motor nucleus of the vagus neurons of immature rats. Brain Res Dev Brain Res 131:93–102

    Article  CAS  PubMed  Google Scholar 

  • Fantin A, Vieira JM, Plein A, Maden CH, Ruhrberg C (2013) The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nat Protoc 8:418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    Article  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435

    Article  CAS  PubMed  Google Scholar 

  • Garel S, Garcia-Dominguez M, Charnay P (2000) Control of the migratory pathway of facial branchiomotor neurones. Development 127:5297–5307

    CAS  PubMed  Google Scholar 

  • Gaufo GO, Thomas KR, Capecchi MR (2003) Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 130:5191–5201

    Article  CAS  PubMed  Google Scholar 

  • Gaunt SJ, Krumlauf R, Duboule D (1989) Mouse homeo-genes within a subfamily, Hox-1.4, -2.6 and -5.1, display similar anteroposterior domains of expression in the embryo, but show stage- and tissue-dependent differences in their regulation. Development 107:131–141

    CAS  PubMed  Google Scholar 

  • Gaunt SJ, Coletta PL, Pravtcheva D, Sharpe PT (1990) Mouse Hox-3.4: homeobox sequence and embryonic expression patterns compared with other members of the Hox gene network. Development 109:329–339

    CAS  PubMed  Google Scholar 

  • Geisen MJ, Di Meglio T, Pasqualetti M, Ducret S, Brunet J-F, Chedotal A, Rijli F (2008) Hox paralog group 2 genes control the migration of mouse pontine neurons through Slit-Robo signaling. PLoS Biol 6(6):e142

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C (2004) Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 231:503–509

    Article  CAS  PubMed  Google Scholar 

  • Gray PA (2013) Transcription factors define the neuroanatomical organization of the medullary reticular formation. Front Neuroanat 7:7. doi:10.3389/fnana.2013.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubert F, Zaverucha-do-Valle C, Pimentel-Coelho PM, Mendez-Otero R, Santiago MF (2009) Radial glia-like cells persist in the adult rat brain. Brain Res 1258:43–52

    Article  CAS  PubMed  Google Scholar 

  • Guthrie S, Butcher M, Lumsden A (1991) Patterns of cell division and interkinetic nuclear migration in the chick embryo hindbrain. J Neurobiol 22:742–754

    Article  CAS  PubMed  Google Scholar 

  • Heyman I, Faissner A, Lumsden A (1995) Cell and matrix specialisations of rhombomere boundaries. Dev Dyn 204:301–315

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Backer S, Puelles L, Bloch-Gallego E (2012) Origin and plasticity of the subdivisions of the inferior olivary complex. Dev Biol 371:215–226

    Article  PubMed  Google Scholar 

  • His W (1904) Die Entwickelung des menschlichen Gehirns: während der ersten Monate. S. Hirzel, Leipzig

    Google Scholar 

  • Hökfelt T, Tsuruo Y, Ulfhake B, Cullheim S, Arvidsson U, Foster GA, Schultzberg M, Schalling M, Arborelius L, Freedman J (1989) Distribution of TRH-like immunoreactivity with special reference to coexistence with other neuroactive compounds. Ann N Y Acad Sci 553:76–105

    Article  PubMed  Google Scholar 

  • Holstege JC, de Graaff W, Hossaini M, Cardona Cano S, Jaarsma D, van den Akker E, Deschamps J (2008) Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice. Proc Natl Acad Sci USA 105:6338–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izpisúa-Belmonte JC, Dollé P, Renucci A, Zappavigna V, Falkenstein H, Duboule D (1990) Primary structure and embryonic expression pattern of the mouse Hox-4.3 homeobox gene. Development 110:733–745

    PubMed  Google Scholar 

  • Jimenez-Guri E, Udina F, Colas J-F, Sharpe J, Padrón-Barthe L, Torres M, Pujades C (2010) Clonal analysis in mice underlines the importance of rhombomeric boundaries in cell movement restriction during hindbrain segmentation. PLoS One 5:e10112. doi:10.1371/journal.pone.0010112

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalia M, Fuxe K, Goldstein M (1985) Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. J Comp Neurol 233:308–332

    Article  CAS  PubMed  Google Scholar 

  • Källén B (1953) On the Significance of the Neuromeres and Similar Structures in Vertebrate Embryos. J Embryol Exp Morphol 1:387–392

    Google Scholar 

  • Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6:553–564

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, McGeer PL, Peng J-H, McGeer EG (1984) Choline acetyltransferase-containing neurons in the rat brain. In: Björklund A, Hökfelt T, Kuhar MJ (eds) Handbook of chemical neuroanatomy, vol 3: classical transmitters and transmitter receptors in the CNS. Elsevier, Amsterdam, pp 51–67

    Google Scholar 

  • Koylu EO, Couceyro PR, Lambert PD, Kuhar MJ (1998) Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J Comp Neurol 391:115–132

    Article  CAS  PubMed  Google Scholar 

  • Krumlauf R (1993) Hox genes and pattern formation in the branchial region of the vertebrate head. Trends Genet 9:106–112

    Article  CAS  PubMed  Google Scholar 

  • Krumlauf R, Marshall H, Studer M, Nonchev S, Sham MH, Lumsden A (1993) Hox homeobox genes and regionalisation of the nervous system. J Neurobiol 24:1328–1340

    Article  CAS  PubMed  Google Scholar 

  • Lim TM, Jaques KF, Stern CD, Keynes RJ (1991) An evaluation of myelomeres and segmentation of the chick embryo spinal cord. Development 113:227–238

    CAS  PubMed  Google Scholar 

  • Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13:329–335

    Article  CAS  PubMed  Google Scholar 

  • Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337:424–428

    Article  CAS  PubMed  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

  • Mahon KA, Westphal H, Gruss P (1988) Expression of homeobox gene Hox 1.1 during mouse embryogenesis. Development 104(Suppl):187–195

    PubMed  Google Scholar 

  • Mallo M, Wellik DM, Deschamps J (2010) Hox genes and regional patterning of the vertebrate body plan. Dev Biol 344:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R (1999) Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126:759–769

    CAS  PubMed  Google Scholar 

  • Marín F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738

    Article  PubMed  Google Scholar 

  • Marín F, Aroca P, Puelles L (2008) Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 323:230–247

    Article  PubMed  Google Scholar 

  • Martínez S (2001) The isthmic organizer and brain regionalization. Int J Dev Biol 45:367–371

    PubMed  Google Scholar 

  • Martínez S, Geijo E, Sánchez-Vives MV, Puelles L, Gallego R (1992) Reduced junctional permeability at interrhombomeric boundaries. Development 116:1069–1076

    PubMed  Google Scholar 

  • Minamikawa T, Miyake T, Takamatsu T, Fujita S (1987) A new method of lectin histochemistry for the study of brain angiogenesis. Lectin angiography. Histochemistry 87:317–320

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S (2004) Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 131:983–995

    Article  CAS  PubMed  Google Scholar 

  • Neal HV (1918) Neuromeres and metameres. J Morphol 31:293–315

    Article  Google Scholar 

  • Nieto MA, Patel K, Wilkinson DG (1996) In situ hybridization analysis of chick embryos in whole mount and tissue sections. Methods Cell Biol 51:219–235

  • Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer-Verlag, Berlin, pp 159–228

    Chapter  Google Scholar 

  • Nieuwenhuys R (2011) The structural, functional, and molecular organization of the brainstem. Front Neuroanat 5:33. doi:10.3389/fnana.2011.00033

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system. Springer, New York

    Book  Google Scholar 

  • Orr H (1887) Contribution to the embryology of the lizard; With especial reference to the central nervous system and some organs of the head; together with observations on the origin of the vertebrates. J Morphol 1:311–372

    Article  Google Scholar 

  • Packer AI, Crotty DA, Elwell VA, Wolgemuth DJ (1998) Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element. Development 125:1991–1998

    CAS  PubMed  Google Scholar 

  • Pasqualetti M, Díaz C, Renaud J-S, Rijli FM, Glover JC (2007) Fate-mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the mouse embryo. J Neurosci 27:9670–9681

    Article  CAS  PubMed  Google Scholar 

  • Prin F, Serpente P, Itasaki N, Gould AP (2014) Hox proteins drive cell segregation and non-autonomous apical remodelling during hindbrain segmentation. Development 141:1492–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puelles L (2013) Plan of the developing vertebrate nervous system: relating embryology to the adult nervous system (prosomere model, overview of brain organization). In: Rakic P, Rubenstein J (eds) Patterning and Cell Type Specification in the Developing Cns and Pns. Elsevier, Amsterdam, pp 187–209

    Chapter  Google Scholar 

  • Puelles L, Rubenstein JL (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479

  • Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

  • Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martínez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies. Academic Press, Amsterdam

    Google Scholar 

  • Rodríguez-Moldes I, Carrera I, Pose-Méndez S, Quintana-Urzainqui I, Candal E, Anadón R, Mazan S, Ferreiro-Galve S (2011) Regionalization of the shark hindbrain: a survey of an ancestral organization. Front Neuroanat 5:16. doi:10.3389/fnana.2011.00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubenstein JL, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580

  • Schughart K, Utset MF, Awgulewitsch A, Ruddle FH (1988) Structure and expression of Hox-2.2, a murine homeobox-containing gene. Proc Natl Acad Sci USA 85:5582–5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimeld SM, Gaunt SJ, Coletta PL, Geada AM, Sharpe PT (1993) Spatial localisation of transcripts of the Hox-C6 gene. J Anat 183:515–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotelo C, Bourrat F, Triller A (1984) Postnatal development of the inferior olivary complex in the rat. II. Topographic organization of the immature olivocerebellar projection. J Comp Neurol 222:177–199

    Article  CAS  PubMed  Google Scholar 

  • Specht LA, Pickel VM, Joh TH, Reis DJ (1981a) Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. I. Early ontogeny. J Comp Neurol 199:233–253

    Article  CAS  PubMed  Google Scholar 

  • Specht LA, Pickel VM, Joh TH, Reis DJ (1981b) Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. J Comp Neurol 199:255–276

    Article  CAS  PubMed  Google Scholar 

  • Stern CD, Jaques KF, Lim TM, Fraser SE, Keynes RJ (1991) Segmental lineage restrictions in the chick embryo spinal cord depend on the adjacent somites. Development 113:239–244

    CAS  PubMed  Google Scholar 

  • Studer M (2001) Initiation of facial motoneurone migration is dependent on rhombomeres 5 and 6. Development 128:3707–3716

    CAS  PubMed  Google Scholar 

  • Theiler K (1989) The house mouse: atlas of embryonic development. Springer, New York

    Book  Google Scholar 

  • Toth LE, Slawin KL, Pintar JE, Nguyen-Huu MC (1987) Region-specific expression of mouse homeobox genes in the embryonic mesoderm and central nervous system. Proc Natl Acad Sci USA 84:6790–6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuruo Y, Hökfelt T, Visser T (1987) Thyrotropin releasing hormone (TRH)-immunoreactive cell groups in the rat central nervous system. Exp Brain Res 68:213–217

    Article  CAS  PubMed  Google Scholar 

  • Tümpel S, Wiedemann LM, Krumlauf R (2009) Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 88:103–137

    Article  PubMed  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Ergeb Anat Entwicklungsgesch 41:3–87

    CAS  PubMed  Google Scholar 

  • Vivancos V, Chen P, Spassky N, Qian D, Dabdoub A, Kelley M, Studer M, Guthrie S (2009) Wnt activity guides facial branchiomotor neuron migration, and involves the PCP pathway and JNK and ROCK kinases. Neural Dev 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogels R, de Graaff W, Deschamps J (1990) Expression of the murine homeobox-containing gene Hox-2.3 suggests multiple time-dependent and tissue-specific roles during development. Development 110:1159–1168

    CAS  PubMed  Google Scholar 

  • Watson C (2012) Hindbrain. In: Watson C, Paxinos G, Puelles L (eds) The Mouse Nervous System. Elsevier Academic Press, Amsterdan, pp 398–423

    Chapter  Google Scholar 

  • Watson C, Paxinos G (2009) Chemoarchitectonic atlas of the mouse brain. Academic Press, London

    Google Scholar 

  • Watson C, Kirkcaldie M, Paxinos G (2010) The Brain. An Introduction to Functional Neuroanatomy. Academic Press, London

    Google Scholar 

  • Wickström R, Holgert H, Lagercrantz H, Hökfelt T (2000) Perinatal distribution of galanin and galanin receptor-1 mRNA in the rat hindbrain. Brain Res Dev Brain Res 123:53–65

    Article  PubMed  Google Scholar 

  • Wilkinson DG, Krumlauf R (1990) Molecular approaches to the segmentation of the hindbrain. Trends Neurosci 13:335–339

    Article  CAS  PubMed  Google Scholar 

  • Wingate RJ, Lumsden A (1996) Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122:2143–2152

    CAS  PubMed  Google Scholar 

  • Yan X, Lin J, Markus A, Rolfs A, Luo J (2011) Regional expression of ADAM19 during chicken embryonic development. Dev Growth Differ 53:333–346

    Article  CAS  PubMed  Google Scholar 

  • Zákány J, Duboule D (1999) Hox genes in digit development and evolution. Cell Tissue Res 296:19–25

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank C. Reyes Mendoza, M. Carmen Fernández, M. Carmen Morga and Isabel Piqueras for technical assistance. This study has been supported by a contract 04548-GERM-06 from the Fundación Séneca of the Government of the Murcia Region and grant MICINN-BFU2008-04156 from the Spanish Ministry of Science and Innovation to L.P. L.T-R. and R.C–S-M were recipient of respective predoctoral fellowships from the above-mentioned Fundación Séneca contract. We also thank RZPD, imaGenes GmbH and Geneservice Ltd for providing cDNA clones; and GenePaint.org, Allen Institute for Brain Science, and The Gene Expression Nervous System Atlas (GENSAT) database projects for providing part of the images analyzed in this work. The 3A10 antibody developed by T.M. Jessell and J. Dodd was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA, USA. cDNA clones were sequenced by the Molecular Biology Lab of the SAI (Servicio de Apoyo a la Investigación) at the University of Murcia.

Conflict of interest

The authors state that no conflict of interest is involved in the present publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faustino Marín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomás-Roca, L., Corral-San-Miguel, R., Aroca, P. et al. Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features. Brain Struct Funct 221, 815–838 (2016). https://doi.org/10.1007/s00429-014-0938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0938-y

Keywords

Navigation