Skip to main content

Advertisement

Log in

RhoE deficiency alters postnatal subventricular zone development and the number of calbindin-expressing neurons in the olfactory bulb of mouse

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The subventricular zone represents an important reservoir of progenitor cells in the adult brain. Cells from the subventricular zone migrate along the rostral migratory stream and reach the olfactory bulb, where they originate different types of interneurons. In this work, we have analyzed the role of the small GTPase RhoE/Rnd3 in subventricular zone cell development using mice-lacking RhoE expression. Our results show that RhoE null mice display a remarkable postnatal broadening of the subventricular zone and caudal rostral migratory stream. This broadening was caused by an increase in progenitor proliferation, observed in the second postnatal week but not before, and by an altered migration of the cells, which appeared in disorganized cell arrangements that impaired the appropriate contact between cells in the rostral migratory stream. In addition, the thickness of the granule cell layer in the olfactory bulb was reduced, although the density of granule cells did not differ between wild-type and RhoE null mice. Finally, the lack of RhoE expression affected the olfactory glomeruli inducing a severe reduction of calbindin-expressing interneurons in the periglomerular layer. This was already evident in the newborns and even more pronounced 15 days later when RhoE null mice displayed 89 % less cells than control mice. Our results indicate that RhoE has pleiotropic functions on subventricular cells because of its role in proliferation and tangential migration, affecting mainly the development of calbindin-expressing cells in the olfactory bulb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alabed YZ, Pool M, Ong Tone S, Fournier AE (2007) Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J Neurosci 27(7):1702–1711

    Article  CAS  PubMed  Google Scholar 

  • Alberti S, Krause SM, Kretz O, Philippar U, Lemberger T, Casanova E, Wiebel FF, Schwarz H, Frotscher M, Schutz G, Nordheim A (2005) Neuronal migration in the murine rostral migratory stream requires serum response factor. Proc Natl Acad Sci USA 102(17):6148–6153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alfano C, Viola L, Heng JI, Pirozzi M, Clarkson M, Flore G, De Maio A, Schedl A, Guillemot F, Studer M (2011) COUP-TFI promotes radial migration and proper morphology of callosal projection neurons by repressing Rnd2 expression. Development 138(21):4685–4697

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22(3):629–634

    CAS  PubMed  Google Scholar 

  • Balenci L, Saoudi Y, Grunwald D, Deloulme JC, Bouron A, Bernards A, Baudier J (2007) IQGAP1 regulates adult neural progenitors in vivo and vascular endothelial growth factor-triggered neural progenitor migration in vitro. J Neurosci 27(17):4716–4724

    Article  CAS  PubMed  Google Scholar 

  • Ballester-Lurbe B, Poch E, Mocholi E, Guasch RM, Perez-Roger I, Terrado J (2009) RhoE is spatiotemporally regulated in the postnatal mouse CNS. Neuroscience 163(2):586–593

    Article  CAS  PubMed  Google Scholar 

  • Batista-Brito R, Close J, Machold R, Fishell G (2008) The distinct temporal origins of olfactory bulb interneuron subtypes. J Neurosci 28(15):3966–3975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bektic J, Pfeil K, Berger AP, Ramoner R, Pelzer A, Schafer G, Kofler K, Bartsch G, Klocker H (2005) Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosis. Prostate 64(4):332–340

    Article  CAS  PubMed  Google Scholar 

  • Cappello S (2013) Small Rho-GTPases and cortical malformations: fine-tuning the cytoskeleton stability. Small GTPases 4(1):51–56. doi:10.4161/sgtp.23093

    Article  PubMed Central  PubMed  Google Scholar 

  • Chardin P (2006) Function and regulation of Rnd proteins. Nat Rev Mol Cell Biol 7(1):54–62

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liao G, Waclaw RR, Burns KA, Linquist D, Campbell K, Zheng Y, Kuan CY (2007) Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons. J Neurosci 27(14):3884–3893

    Article  CAS  PubMed  Google Scholar 

  • De Marchis S, Bovetti S, Carletti B, Hsieh YC, Garzotto D, Peretto P, Fasolo A, Puche AC, Rossi F (2007) Generation of distinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population. J Neurosci 27(3):657–664

    Article  PubMed  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA 96(20):11619–11624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    Article  CAS  PubMed  Google Scholar 

  • Ferron SR, Andreu-Agullo C, Mira H, Sanchez P, Marques-Torrejon MA, Farinas I (2007) A combined ex/in vivo assay to detect effects of exogenously added factors in neural stem cells. Nat Protoc 2(4):849–859

    Article  CAS  PubMed  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19(1):1–49

    Article  CAS  PubMed  Google Scholar 

  • Govek EE, Hatten ME, Van Aelst L (2011) The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 71:528–553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grise F, Sena S, Bidaud-Meynard A, Baud J, Hiriart JB, Makki K, Dugot-Senant N, Staedel C, Bioulac-Sage P, Zucman-Rossi J, Rosenbaum J, Moreau V (2012) Rnd3/RhoE is down-regulated in hepatocellular carcinoma and controls cellular invasion. Hepatology 55(6):1766–1775. doi:10.1002/hep.25568

    Article  CAS  PubMed  Google Scholar 

  • Guasch RM, Scambler P, Jones GE, Ridley AJ (1998) RhoE regulates actin cytoskeleton organization and cell migration. Mol Cell Biol 18(8):4761–4771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Gotz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8(7):865–872

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2(2):a001818

    Article  PubMed Central  PubMed  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701

    Article  CAS  PubMed  Google Scholar 

  • Heng JI, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O, Skowronska-Krawczyk D, Bedogni F, Matter JM, Hevner R, Guillemot F (2008) Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455(7209):114–118

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, Sahai E (2011) Collective cell migration requires suppression of actomyosin at cell–cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 13(1):49–58. doi:10.1038/ncb2133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81(7):1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Jankovski A, Garcia C, Soriano E, Sotelo C (1998) Proliferation, migration and differentiation of neuronal progenitor cells in the adult mouse subventricular zone surgically separated from its olfactory bulb. Eur J Neurosci 10(12):3853–3868

    Article  CAS  PubMed  Google Scholar 

  • Katayama K, Melendez J, Baumann JM, Leslie JR, Chauhan BK, Nemkul N, Lang RA, Kuan CY, Zheng Y, Yoshida Y (2011) Loss of RhoA in neural progenitor cells causes the disruption of adherens junctions and hyperproliferation. Proc Natl Acad Sci USA 108(18):7607–7612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein RM, Aplin AE (2009) Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions. Cancer Res 69(6):2224–2233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25(30):6997–7003

    Article  CAS  PubMed  Google Scholar 

  • Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JL, Alvarez-Buylla A (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27(26):6878–6891

    Article  CAS  PubMed  Google Scholar 

  • Lemasson M, Saghatelyan A, Olivo-Marin JC, Lledo PM (2005) Neonatal and adult neurogenesis provide two distinct populations of newborn neurons to the mouse olfactory bulb. J Neurosci 25(29):6816–6825

    Article  CAS  PubMed  Google Scholar 

  • Leone DP, Srinivasan K, Brakebusch C, McConnell SK (2010) The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain. Dev Neurobiol 70(9):659–678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leong SY, Faux CH, Turbic A, Dixon KJ, Turnley AM (2011) The Rho kinase pathway regulates mouse adult neural precursor cell migration. Stem Cells 29(2):332–343

    Article  CAS  PubMed  Google Scholar 

  • Liebig T, Erasmus J, Kalaji R, Davies D, Loirand G, Ridley A, Braga VM (2009) RhoE Is required for keratinocyte differentiation and stratification. Mol Biol Cell 20(1):452–463. doi:10.1091/mbc.E07-11-1197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin X, Liu B, Yang X, Yue X, Diao L, Wang J, Chang J (2013) Genetic deletion of Rnd3 results in aqueductal stenosis leading to hydrocephalus through up-regulation of Notch signaling. Proc Natl Acad Sci USA. doi:10.1073/pnas.1219995110

    Google Scholar 

  • Linseman DA, Loucks FA (2008) Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci 13:657–676

    Article  CAS  PubMed  Google Scholar 

  • Lledo PM, Merkle FT, Alvarez-Buylla A (2008) Origin and function of olfactory bulb interneuron diversity. Trends Neurosci 31(8):392–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Dong Z, Zou J, Zeng Q, Wu D, Liu L (2012a) Down-regulation of RhoE is associated with progression and poor prognosis in hepatocellular carcinoma. J Surg Oncol 105(7):699–704. doi:10.1002/jso.23019

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Zou J, Dong Z, Zeng Q, Wu D, Liu L (2012b) Up-regulated miR-17 promotes cell proliferation, tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma. Biochem J 442(2):311–321. doi:10.1042/BJ20111517

    Article  CAS  PubMed  Google Scholar 

  • Marin O, Valdeolmillos M, Moya F (2006) Neurons in motion: same principles for different shapes? Trends Neurosci 29(12):655–661

    Article  CAS  PubMed  Google Scholar 

  • Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317(5836):381–384

    Article  CAS  PubMed  Google Scholar 

  • Mocholi E, Ballester-Lurbe B, Arque G, Poch E, Peris B, Guerri C, Dierssen M, Guasch RM, Terrado J, Perez-Roger I (2011) RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice. PLoS ONE 6(4):e19236. doi:10.1371/journal.pone.0019236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moore SW, Correia JP, Lai Wing Sun K, Pool M, Fournier AE, Kennedy TE (2008) Rho inhibition recruits DCC to the neuronal plasma membrane and enhances axon chemoattraction to netrin 1. Development 135(17):2855–2864

    Article  CAS  PubMed  Google Scholar 

  • Nadif Kasri N, Van Aelst L (2008) Rho-linked genes and neurological disorders. Pflugers Arch 455(5):787–797

    Article  CAS  PubMed  Google Scholar 

  • Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P (1998) A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141(1):187–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pacary E, Heng J, Azzarelli R, Riou P, Castro D, Lebel-Potter M, Parras C, Bell DM, Ridley AJ, Parsons M, Guillemot F (2011) Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 69(6):1069–1084. doi:10.1016/j.neuron.2011.02.018

    Article  CAS  PubMed  Google Scholar 

  • Pacary E, Azzarelli R, Guillemot F (2013) Rnd3 coordinates early steps of cortical neurogenesis through actin-dependent and -independent mechanisms. Nat Commun 4:1635. doi:10.1038/ncomms2614

    Article  PubMed Central  PubMed  Google Scholar 

  • Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501(6):825–836

    Article  CAS  PubMed  Google Scholar 

  • Peretto P, Giachino C, Aimar P, Fasolo A, Bonfanti L (2005) Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain. J Comp Neurol 487(4):407–427. doi:10.1002/cne.20576

    Article  PubMed  Google Scholar 

  • Peris B, Gonzalez-Granero S, Ballester-Lurbe B, Garcia-Verdugo JM, Perez-Roger I, Guerri C, Terrado J, Guasch RM (2012) Neuronal polarization is impaired in mice lacking RhoE expression. J Neurochem. doi:10.1111/j.1471-4159.2012.07733.x

    PubMed  Google Scholar 

  • Pinner S, Sahai E (2008) PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol 10(2):127–137. doi:10.1038/ncb1675

    Article  CAS  PubMed  Google Scholar 

  • Poch E, Minambres R, Mocholi E, Ivorra C, Perez-Arago A, Guerri C, Perez-Roger I, Guasch RM (2007) RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line. Exp Cell Res 313(4):719–731

    Article  CAS  PubMed  Google Scholar 

  • Riento K, Guasch RM, Garg R, Jin B, Ridley AJ (2003) RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23(12):4219–4229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riou P, Villalonga P, Ridley AJ (2010) Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression. BioEssays 32(11):986–992. doi:10.1002/bies.201000060

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein NM, Chan JF, Kim JY, Hansen SH, Firestone GL (2005) Rnd3/RhoE induces tight junction formation in mammary epithelial tumor cells. Exp Cell Res 305(1):74–82. doi:10.1016/j.yexcr.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  • Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632

    Article  CAS  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  • Shinohara R, Thumkeo D, Kamijo H, Kaneko N, Sawamoto K, Watanabe K, Takebayashi H, Kiyonari H, Ishizaki T, Furuyashiki T, Narumiya S (2012) A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors. Nat Neurosci 15(3):373-U193. doi:10.1038/nn.3020

    Article  Google Scholar 

  • Stenman J, Toresson H, Campbell K (2003) Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J Neurosci 23(1):167–174

    CAS  PubMed  Google Scholar 

  • Talens-Visconti R, Peris B, Guerri C, Guasch RM (2010) RhoE stimulates neurite-like outgrowth in PC12 cells through inhibition of the RhoA/ROCK-I signalling. J Neurochem 112(4):1074–1087

    Article  CAS  PubMed  Google Scholar 

  • Villalonga P, Guasch RM, Riento K, Ridley AJ (2004) RhoE inhibits cell cycle progression and Ras-induced transformation. Mol Cell Biol 24(18):7829–7840. doi:10.1128/MCB.24.18.7829-7840.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weinandy F, Ninkovic J, Gotz M (2011) Restrictions in time and space–new insights into generation of specific neuronal subtypes in the adult mammalian brain. Eur J Neurosci 33(6):1045–1054

    Article  PubMed  Google Scholar 

  • Wennerberg K, Forget MA, Ellerbroek SM, Arthur WT, Burridge K, Settleman J, Der CJ, Hansen SH (2003) Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr Biol 13(13):1106–1115

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Li M, Chen L, Leng W, Yuan D, Pang X, Chen L, Li R, Tang Q, Bi F (2013) Suppression of RND3 activity by AES downregulation promotes cancer cell proliferation and invasion. Int J Mol Med 31(5):1081–1086. doi:10.3892/ijmm.2013.1321

    CAS  PubMed  Google Scholar 

  • Young KM, Fogarty M, Kessaris N, Richardson WD (2007) Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci 27(31):8286–8296

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Yang J, Fan T, Li S, Ren X (2012) RhoE functions as a tumor suppressor in esophageal squamous cell carcinoma and modulates the PTEN/PI3K/Akt signaling pathway. Tumour Biol 33(5):1363–1374. doi:10.1007/s13277-012-0384-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Universidad CEU Cardenal Herrera (PRUCH and Santander-Copernicus), Consellería de Educación de la Generalitat Valenciana (GVPROMETEO-2009/011), Red RETICS (RD06/0010/0022) and Instituto de Salud Carlos III (PI10/01686, FEDER co-funding), DURSI (09 2009SGR1313) and MINECO SAF2010-16427 and SAF2013-49176-C2-1-R. The work was also supported by fellowships from the Generalitat Valenciana to BBL and from the Universidad CEU Cardenal Herrera to EM.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Terrado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballester-Lurbe, B., González-Granero, S., Mocholí, E. et al. RhoE deficiency alters postnatal subventricular zone development and the number of calbindin-expressing neurons in the olfactory bulb of mouse. Brain Struct Funct 220, 3113–3130 (2015). https://doi.org/10.1007/s00429-014-0846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0846-1

Keywords

Navigation