Skip to main content

Advertisement

Log in

Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Human ancestors first modified stones into tools 2.6 million years ago, initiating a cascading increase in technological complexity that continues today. A parallel trend of brain expansion during the Paleolithic has motivated over 100 years of theorizing linking stone toolmaking and human brain evolution, but empirical support remains limited. Our study provides the first direct experimental evidence identifying likely neuroanatomical targets of natural selection acting on toolmaking ability. Subjects received MRI and DTI scans before, during, and after a 2-year Paleolithic toolmaking training program. White matter fractional anisotropy (FA) showed changes in branches of the superior longitudinal fasciculus leading into left supramarginal gyrus, bilateral ventral precentral gyri, and right inferior frontal gyrus pars triangularis. FA increased from Scan 1–2, a period of intense training, and decreased from Scan 2–3, a period of reduced training. Voxel-based morphometry found a similar trend toward gray matter expansion in the left supramarginal gyrus from Scan 1–2 and a reversal of this effect from Scan 2–3. FA changes correlated with training hours and with motor performance, and probabilistic tractography confirmed that white matter changes projected to gray matter changes and to regions that activate during Paleolithic toolmaking. These results show that acquisition of Paleolithic toolmaking skills elicits structural remodeling of recently evolved brain regions supporting human tool use, providing a mechanistic link between stone toolmaking and human brain evolution. These regions participate not only in toolmaking, but also in other complex functions including action planning and language, in keeping with the hypothesized co-evolution of these functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersson JLR, Jenkinson M et al (2007). Non-linear optimisation: FMRIB technical report TR07JA1 from www.fmrib.ox.ac.uk/analysis/techrep

  • Antonenko D, Meinzer M et al (2012) Grammar learning in older adults is linked to white matter microstructure and functional connectivity. Neuroimage 62(3):1667–1674

    PubMed  Google Scholar 

  • Arbib MA (2005) From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behav Brain Sci 28(2):105–124

  • Aron AA, Robbins TW et al (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177

    PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821

    CAS  PubMed  Google Scholar 

  • Avants BB, Schoenemann PT, James CG (2006) Lagrangian frame diffeomorphic image registration: morphometric comparison of human and chimpanzee cortex. Med Image Anal 10(3): 397–412

  • Baldwin JM (1896) A new factor in evolution. Am Nat 30(354):441–451

    Google Scholar 

  • Bateson P (2004) The active role of behaviour in evolution. Biol Philos 19(2): 283–298

  • Behrens TE, Woolrich MW et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50(5):1077–1088

    CAS  PubMed  Google Scholar 

  • Behrens TE, Johansen-Berg H et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1):144–155

    CAS  PubMed  Google Scholar 

  • Bennett I, Madden DJ, Vaidya CJ, Howard DV, Howard JH Jr (2010) Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum Brain Mapp 31:378–390

    PubMed Central  PubMed  Google Scholar 

  • Beyene Y, Katoh S, WoldeGabriel G, Hart WK, Uto K, Sudo M, Kondo M, Hyodo M, Renne PR, Suwa G, Asfaw B (2013) The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. PNAS 110(5):1584–1591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley B, Sampson CG (1986) Analysis by replication of two Acheulian artefact assemblages. In: Bailey G, Callow P (eds) Stone Age Prehistory: Studies in Honour of Charles McBurney, pp 29–45

  • Bril B, Roux V, Dietrich G (2005). Stone knapping: Khambhat (India), a unique opportunity? Stone knapping: the necessary conditions for a uniquely hominin behaviour. In: Roux V, Bril B (eds) McDonald Institute for Archaeological Research, Cambridge, pp 53–72

  • Bril B, Rein R, Nonaka T, Wenban-Smith F, Dietrich G (2010) The role of expertise in tool use: skill differences in functional action adaptations to task constraints. J Exp Psychol Hum Percept Perform 36(4):825–839

    PubMed  Google Scholar 

  • Buch ER, Mars RB, Boorman ED, Rushworth MFS (2010) A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. J Neurosci 30(4):1395–1401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choe AS, Stepniewska I, Colvin DC, Ding Z, Anderson AW (2012) Validation of diffusion tensor MRI in the central nervous system using light microscopy: quantitative comparison of fiber properties. NMR Biomed 25:900–908

    CAS  PubMed  Google Scholar 

  • Corballis MC (2002) From hand to mouth: the origins of language. Princeton University Press, Princeton

    Google Scholar 

  • Denys K, Vanduffel W et al (2004) Visual activation in prefrontal cortex is stronger in monkeys than in humans. J Cogn Neurosci 16(9):1505–1516

    PubMed  Google Scholar 

  • Ding AY, Li Q et al (2013) MR diffusion tensor imaging detects rapid microstructural changes in amygdala and hippocampus following fear conditioning in mice. PLoS One 8(1):e51704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Douaud G, Smith S et al (2007) Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain 130(Pt 9):2375–2386

    PubMed  Google Scholar 

  • Draganski B, Gaser C et al (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312

    CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (2005) Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 25(6):1375–1386

  • Engels F (2003 [1876]) The part played by labour in the transition from ape to man. In: Scharff RC, Dusek V (eds) Philosophy of technology. Blackwell, London, pp 71–77

  • Engvig A, Fjell AM et al (2012) Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Hum Brain Mapp 33(10):2390–2406

    PubMed  Google Scholar 

  • Faisal AA, Wolpert DM (2009) Near optimal combination of sensory and motor uncertainty in time during a naturalistic perception-action task. J Neurophysiol 101(4):1901

  • Faisal A, Stout D et al (2010) The manipulative complexity of Lower Paleolithic stone toolmaking. PLoS One 5(11):e13718

    PubMed Central  PubMed  Google Scholar 

  • Falk D (1983) Cerebral cortices of East African early hominids. Science 221(4615):1072–1074

    CAS  PubMed  Google Scholar 

  • Floel A, de Vries MH et al (2009) White matter integrity in the vicinity of Broca’s area predicts grammar learning success. Neuroimage 47(4):1974–1981

    PubMed  Google Scholar 

  • Floyer-Lea A, Matthews PM (2004) Changing brain networks for visuomotor control with increased movement automaticity. J Neurophysiol 92(4):2405–2412

    CAS  PubMed  Google Scholar 

  • Frey SH (2008) Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philos Trans R Soc B Biol Sci 363(1499):1951–1957

    Google Scholar 

  • Friston KJ et al (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2(4):189–210

  • Gebauer D, Fink A et al (2012) Differences in integrity of white matter and changes with training in spelling impaired children: a diffusion tensor imaging study. Brain Struct Funct 217(3):747–760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8(1):4–15

    Google Scholar 

  • Greenfield PM (1991) Language, tools, and brain: the development and evolution of hierarchically organized sequential behavior. Behav Brain Sci 14:531–595

    Google Scholar 

  • Hecht EE, Gutman DA et al (2013a) Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans. Cereb Cortex 23(5):1014–1024

    PubMed Central  PubMed  Google Scholar 

  • Hecht EE, Murphy LE et al (2013b) Differences in neural activation for object-directed grasping in chimpanzees and humans. J Neurosci 33(35):14117–14134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci 107(29):13135–13140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holloway RL (1967) The evolution of the human brain: some notes toward a synthesis between neural structure and the evolution of complex behavior. Gen Syst 12:3–19

    Google Scholar 

  • Holloway RL, Broadfield D, Yuan M (2004a) The human fossil record, vol 3, brain endocasts–the paleoneurological evidence. Wiley-Liss, Hoboken

    Google Scholar 

  • Holloway RL, Broadfield D et al (2004b) The human fossil record, volume 3, brain endocasts–the paleoneurological evidence. Wiley-Liss, Hoboken

    Google Scholar 

  • Hua K, Zhang J et al (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39(1):336–347

    PubMed Central  PubMed  Google Scholar 

  • Iriki A, Taoka M (2012) Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions. Philos Trans R Soc B Biol Sci 367(1585):10–23

    Google Scholar 

  • Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    CAS  PubMed  Google Scholar 

  • Jenkinson M, Bannister P et al (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841

    PubMed  Google Scholar 

  • Jenkinson M, Beckmann CF et al (2012) FSL. Neuroimage 62(2):782–790

    PubMed  Google Scholar 

  • Keller TA, Just MA (2009) Altering cortical connectivity: remediation-induced changes in the white matter of poor readers. Neuron 64:624–631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khreisheh NN, Davies D, Bradley BA (2013) Extending experimental control: the use of porcelain in flaked stone experimentation. Adv Archaeol Prac: J Soc Am Archaeol 1(1):37–46

  • Koechlin E, Jubault T (2006) Broca’s area and the hierarchical organization of human behavior. Neuron 50(6):963–974

    CAS  PubMed  Google Scholar 

  • Kumar R, Macey PM, Woo MA, Harper RM (2010) Rostral brain axonal injury in congenital central hypoventilation syndrome. J Neurosci Res 88:2146–2154

    CAS  PubMed  Google Scholar 

  • Kumar R, Nguyen HD, Macey PM, Woo MA, Harper RM (2012) Regional brain axial and radial diffusivity changes during development. J Neurosci Res 90:346–355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langergraber KE et al (2012) Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc Natl Acad Sci 109(39):15716–15721

  • Lappe C, Herholz SC et al (2008) Cortical plasticity induced by short-term unimodal and multimodal musical training. J Neurosci 28(39):9632–9639

    CAS  PubMed  Google Scholar 

  • Lee B, Park JY et al (2010) White matter neuroplastic changes in long-term trained players of the game of Baduk (GO): a voxel-based diffusion-tensor imaging study. Neuroimage 52(1):9–19

    PubMed  Google Scholar 

  • Lepre CJ, Roche H, Kent DV, Harmand S, Quinn RL, Brugal J-P, Texier P-J, Lenoble A, Feibel CS (2011) An earlier origin for the Acheulian. Nature 477(7362):82–85

    CAS  PubMed  Google Scholar 

  • Levy BJ, Wagner AD (2011) Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 1224(1):40–62

  • Maguire EA, Gadian DG et al (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8(2):79–86

    PubMed  Google Scholar 

  • Menenti L, Petersson KM et al (2009) When elephants fly: differential sensitivity of right and left inferior frontal gyri to discourse and world knowledge. J Cogn Neurosci 21(12):2358–2368

    PubMed  Google Scholar 

  • Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539

    CAS  PubMed  Google Scholar 

  • Nelissen K, Luppino G et al (2005) Observing others: multiple action representation in the frontal lobe. Science 310(5746):332–336

    CAS  PubMed  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25

    PubMed  Google Scholar 

  • Nieuwenhuis S, Forstmann BU, Wagenmakers EJ (2011) Erroneous analyses of interactions in neuroscience: a problem of significance. Nat Neurosci 14(9):1105–1107

    CAS  PubMed  Google Scholar 

  • Nonaka T, Bril B, Rein R (2010) How do stone knappers predict and control the outcome of flaking? Implications for understanding early stone tool technology. J Hum Evol 59(2):155–167

    PubMed  Google Scholar 

  • Oakley KPBM (1949) Man: the toolmaker. Trustees of the British Museum, London

    Google Scholar 

  • Orban GA, Rizzolatti G (2012) An area specifically devoted to tool use in human left inferior parietal lobule. Behav Brain Sci 35(4):234

    PubMed  Google Scholar 

  • Osborn H (1896) A mode of evolution requiring neither natural selection nor the inheritance of acquired characters. Trans N Y Acad Sci 15:141–148

    Google Scholar 

  • Peeters R, Simone L et al (2009) The representation of tool use in humans and monkeys: common and uniquely human features. J Neurosci 29(37):11523–11539

    CAS  PubMed  Google Scholar 

  • Peeters RR, Rizzolatti G et al (2013) Functional properties of the left parietal tool use region. NeuroImage 78:83–93

    PubMed  Google Scholar 

  • Petrides M, Pandya DN (2009) Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol 7(8):e1000170

    PubMed Central  PubMed  Google Scholar 

  • Pulvermüller F, Fadiga L (2010) Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci 11(5):351–360

    PubMed  Google Scholar 

  • Quallo M, Price C, Ueno K, Asamizuya T, Cheng K, Lemon R, Iriki A (2009) Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci 106(43):18379–18384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramayya AG, Glasser MF et al (2010) A DTI investigation of neural substrates supporting tool use. Cereb Cortex 20(3):507–516

    PubMed  Google Scholar 

  • Rilling JK, Glasser MF et al (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11(4):426–428

    CAS  PubMed  Google Scholar 

  • Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Cogn Sci 21(5):188–194

    CAS  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106(4):283–296

    CAS  PubMed  Google Scholar 

  • Ruff CB, Trinkaus E, Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387(6629):173–176

    CAS  PubMed  Google Scholar 

  • Sagi Y, Tavor I et al (2012) Learning in the fast lane: new insights into neuroplasticity. Neuron 73(6):1195–1203

    CAS  PubMed  Google Scholar 

  • Schenker NM, Buxhoeveden DP et al (2008) A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comp Neurol 510(1):117–128

    PubMed  Google Scholar 

  • Schlegel AA, Rudelson JJ et al (2012) White matter structure changes as adults learn a second language. J Cogn Neurosci 24(8):1664–1670

    PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(Pt 3):630–653

    PubMed  Google Scholar 

  • Scholz J, Klein MC et al (2009) Training induces changes in white-matter architecture. Nat Neurosci 12(11):1370–1371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Semaw S, Rogers MJ et al (2003) 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J Hum Evol 45(2):169–177

    PubMed  Google Scholar 

  • Sisti HM, Geurts M et al (2012) Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning. Learn Mem 19(8):351–357

    PubMed  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    PubMed  Google Scholar 

  • Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44(1):83–98

    PubMed  Google Scholar 

  • Smith SM, Jenkinson M et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    PubMed  Google Scholar 

  • Smith SM, Jenkinson M et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505

    PubMed  Google Scholar 

  • Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436

    PubMed  Google Scholar 

  • Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722

    PubMed  Google Scholar 

  • Steele CJ, Scholz J et al (2012) Structural correlates of skilled performance on a motor sequence task. Front Hum Neurosci 6:289

    PubMed Central  PubMed  Google Scholar 

  • Stout D (2002) Skill and cognition in stone tool production: an ethnographic case study from Irian Jaya. Curr Anthropol 45(3):693–722

    Google Scholar 

  • Stout D (2010) The evolution of cognitive control. Top Cogn Sci 2(4):614–630

    PubMed  Google Scholar 

  • Stout D (2011) Stone toolmaking and the evolution of human culture and cognition. Philos Trans R Soc Lond B Biol Sci 366(1567):1050–1059

    PubMed Central  PubMed  Google Scholar 

  • Stout D, Chaminade T (2007) The evolutionary neuroscience of tool making. Neuropsychologia 45:1091–1100

    PubMed  Google Scholar 

  • Stout D, Chaminade T (2012) Stone tools, language and the brain in human evolution. Philos Trans R Soc Lond B Biol Sci 367(1585):75–87

    PubMed Central  PubMed  Google Scholar 

  • Stout D, Toth N et al (2008) Neural correlates of Early Stone Age tool-making: technology, language and cognition in human evolution. Philos Trans R Soc Lond B 363:1939–1949

    Google Scholar 

  • Stout D, Passingham R et al (2011) Technology, expertise and social cognition in human evolution. Eur J Neurosci 33(7):1328–1338

    PubMed  Google Scholar 

  • Stout D et al (2014) Late Acheulean technology and cognition at Boxgrove, UK. J Archaeol Sci 41:576–590

  • Takeuchi H, Sekiguchi A et al (2010) Training of working memory impacts structural connectivity. J Neurosci 30(9):3297–3303

    CAS  PubMed  Google Scholar 

  • Taubert M, Draganski B et al (2010) Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci 30(35):11670–11677

    CAS  PubMed  Google Scholar 

  • Taubert M, Lohmann G et al (2011) Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage 57(4):1492–1498

    PubMed  Google Scholar 

  • Taubert M, Villringer A et al (2012) Learning-related gray and white matter changes in humans: an update. Neuroscientist 18(4):320–325

    PubMed  Google Scholar 

  • Teffer K, Semendeferi K (2012) Human prefrontal cortex: evolution, development, and pathology. Prog Brain Res 195:191–218

    PubMed  Google Scholar 

  • Thiebaut de Schotten M, Dell’Acqua F et al (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48(1):82–96

    PubMed  Google Scholar 

  • Thomas C, Baker CI (2013) Teaching an adult brain new tricks: a critical review of evidence for training-dependent structural plasticity in humans. Neuroimage 73:225–236

    PubMed  Google Scholar 

  • Tseng BY, Gundapuneedi T et al (2013) White matter integrity in physically fit older adults. Neuroimage 82C:510–516

    Google Scholar 

  • Uomini NT, Meyer GF (2013) Shared brain lateralization patterns in language and acheulean stone tool production: a functional transcranial doppler ultrasound study. PLoS One 8(8):e72693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanduffel W, Fize D et al (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298(5592):413–415

    CAS  PubMed  Google Scholar 

  • Vigneau M, Beaucousin V et al (2011) What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing?: insights from a meta-analysis. NeuroImage 54(1):577–593

    CAS  PubMed  Google Scholar 

  • Wakana S, Caprihan A et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36(3):630–644

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Adamson C et al (2012) Sex differences in white matter development during adolescence: a DTI study. Brain Res 1478:1–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber BH, Depew DJ (eds) (2003). Evolution and learning: the Baldwin effect reconsidered. MIT Press, Cambridge

  • Wheeler-Kingshott CA, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61(5):1255–1260

    PubMed  Google Scholar 

  • Woolrich MW, Jbabdi S et al (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45(1 Suppl):S173–S186

    PubMed  Google Scholar 

  • Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Jones M, DeBoy CA, Reich DS, Farrell JA, Hoffman PN, Griffin JW, Sheikh KA, Miller MI, Mori S et al (2009) Diffusion tensor magnetic resonance imaging of Wallerian degeneration in rat spinal cord after dorsal root axotomy. J Neurosci 29:3160–3171

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from the Leverhulme Trust, “Learning to Be Human: Skill Acquisition and the Development of the Human Brain”, F/00 144/BP. SVT  and AAF  acknowledge support by the  “Biotechnology and Biological Sciences Research Council” and  funding by the Human Frontiers in Science Program (HFSP RPG00022/2012).  JK received funding from the Wellcome Trust.  We would like to extend our gratitude to the volunteer subjects whose dedication, good humor and reliability made this project possible. Thanks are also due to Chris Frith for advice and support on this project, to Antony Whitlock for assistance with toolmaking training, and to Anderson Winkler for helpful input on GLM designation in FSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Hecht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hecht, E.E., Gutman, D.A., Khreisheh, N. et al. Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Struct Funct 220, 2315–2331 (2015). https://doi.org/10.1007/s00429-014-0789-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0789-6

Keywords

Navigation