Skip to main content

Advertisement

Log in

Localisation of N-acetylaspartate in oligodendrocytes/myelin

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The role of N-acetylaspartate in the brain is unclear. Here we used specific antibodies against N-acetylaspartate and immunocytochemistry of carbodiimide-fixed adult rodent brain to show that, besides staining of neuronal cell bodies in the grey matter, N-acetylaspartate labelling was present in oligodendrocytes/myelin in white matter tracts. Immunoelectron microscopy of the rat hippocampus showed that N-acetylaspartate was concentrated in the myelin. Also neuronal cell bodies and axons contained significant amounts of N-acetylaspartate, while synaptic elements and astrocytes were low in N-acetylaspartate. Mitochondria in axons and neuronal cell bodies contained higher levels of N-acetylaspartate compared to the cytosol, compatible with synthesis of N-acetylaspartate in mitochondria. In aspartoacylase knockout mice, in which catabolism of N-acetylaspartate is blocked, the levels of N-acetylaspartate were largely increased in oligodendrocytes/myelin. In these mice, the highest myelin concentration of N-acetylaspartate was found in the cerebellum, a region showing overt dysmyelination. In organotypic cortical slice cultures there was no evidence for N-acetylaspartate-induced myelin toxicity, supporting the notion that myelin damage is induced by the lack of N-acetylaspartate for lipid production. Our findings also implicate that N-acetylaspartate signals on magnetic resonance spectroscopy reflect not only vital neurons but also vital oligodendrocytes/myelin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adachi M, Torii J, Schneck L, Volk BW (1972) Electron microscopic and enzyme histochemical studies of the cerebellum in spongy degeneration (van Bogaert and Bertrans type). Acta Neuropathol 20:22–31

    Article  CAS  PubMed  Google Scholar 

  • Ariyannur PS, Moffett JR, Manickam P, Pattabiraman N, Arun P, Nitta A et al (2010) Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Res 1335:1–13

    Article  CAS  PubMed  Google Scholar 

  • Arnold DL, de Stefano N, Matthews PM, Trapp BD (2001) N-acetylaspartate: usefulness as an indicator of viable neuronal tissue. Ann Neurol 50:823–825

    Article  CAS  PubMed  Google Scholar 

  • Arun P, Moffett JR, Namboodiri AM (2009) Evidence for mitochondrial and cytoplasmic N-acetylaspartate synthesis in SH-SY5Y neuroblastoma cells. Neurochem Int 55:219–225

    Google Scholar 

  • Baslow MH (2003) Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: a mechanistic explanation. J Mol Neurosci 21:185–190

    Article  CAS  PubMed  Google Scholar 

  • Bergersen LH, Storm-Mathisen J, Gundersen V (2008) Immunogold quantification of amino acids and proteins in complex subcellular compartments. Nat Protoc 3:144–152

    Article  CAS  PubMed  Google Scholar 

  • Bhakoo KK, Pearce D (2000) In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 74:254–262

    Article  CAS  PubMed  Google Scholar 

  • Boltshauser E, Schmitt B, Wevers RA, Engelke U, Burlina AB, Burlina AP (2004) Follow-up of a child with hypoacetylaspartia. Neuropediatrics 35:255–258

    Article  CAS  PubMed  Google Scholar 

  • Burlina AP, Ferrari V, Divry P, Gradowska W, Jakobs C, Bennett MJ et al (1999) N-acetylaspartylglutamate in Canavan disease: an adverse effector? Eur J Pediatr 158:406–409

    Article  CAS  PubMed  Google Scholar 

  • Burri R, Steffen C, Herschkowitz N (1991) N-acetyl-l-aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. Dev Neurosci 13:403–411

    Article  CAS  PubMed  Google Scholar 

  • Canavan MM (1931) Schilder’s encephalitis periaxialis diffusa—report or a case in a child aged sixteen and one-half months. Arch Neurol Psychiatry 25:299–308

    Article  Google Scholar 

  • Chakraborty G, Ledeen R (2003) Fatty acid synthesizing enzymes intrinsic to myelin. Brain Res Mol Brain Res 112:46–52

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78:736–745

    Article  CAS  PubMed  Google Scholar 

  • De SA, Yu LM (2006) Preparation of organotypic hippocampal slice cultures: interface method. Nat Protoc 1:1439–1445

    Google Scholar 

  • De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38:901–909

    Article  PubMed  Google Scholar 

  • Einstein O, Friedman-Levi Y, Grigoriadis N, Ben-Hur T (2009) Transplanted neural precursors enhance host brain-derived myelin regeneration. J Neurosci 29:15694–15702

    Article  CAS  PubMed  Google Scholar 

  • Gotoh M, Davies SE, Obrenovitch TP (1997) Brain tissue acidosis: effects on the extracellular concentration of N-acetylaspartate. J Neurochem 69:655–661

    Article  CAS  PubMed  Google Scholar 

  • Gundersen V, Chaudhry FA, Bjaalie JG, Fonnum F, Ottersen OP, Storm-Mathisen J (1998) Synaptic vesicular localisation and exocytosis of l-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci 18:6059–6070

    CAS  PubMed  Google Scholar 

  • Janson CG, McPhee SW, Francis J, Shera D, Assadi M, Freese A et al (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatrics 37:209–221

    Article  CAS  PubMed  Google Scholar 

  • Kamada K, Takeuchi F, Houkin K, Kitagawa M, Kuriki S, Ogata A et al (2001) Reversible brain dysfunction in MELAS: MEG, and (1)H MRS analysis. J Neurol Neurosurg Psychiatry 70:675–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karadottir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaul R, Casanova J, Johnson AB, Tang P, Matalon R (1991) Purification, characterization, and localisation of aspartoacylase from bovine brain. J Neurochem 56:129–135

    Article  CAS  PubMed  Google Scholar 

  • Kaul R, Gao GP, Balamurugan K, Matalon R (1993) Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 5:118–123

    Article  CAS  PubMed  Google Scholar 

  • Klugmann M, Symes CW, Klaussner BK, Leichtlein CB, Serikawa T, Young D et al (2003) Identification and distribution of aspartoacylase in the postnatal rat brain. Neuroreport 14:1837–1840

    Article  CAS  PubMed  Google Scholar 

  • Kolodziejczyk K, Hamilton NB, Wade A, Karadottir R, Attwell D (2009) The effect of N-acetyl-aspartyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes. Brain 132:1496–1508

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN et al (2012)  Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Google Scholar 

  • Ledeen RW, Golly F, Haley JE (1992) Axon-myelin transfer of phospholipids and phospholipid precursors. Labeling of myelin phosphoinositides through axonal transport. Mol Neurobiol 6:179–190

    Google Scholar 

  • Long PM, Moffett JR, Namboodiri AM, Viapiano MS, Lawler SE, Jaworski DM (2013) N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) promote growth and inhibit differentiation of glioma stem-like cells. J Biol Chem 288:26188–26200

    Google Scholar 

  • Madhavarao CN, Chinopoulos C, Chandrasekaran K, Namboodiri MA (2003) Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J Neurochem 86:824–835

    Google Scholar 

  • Madhavarao CN, Moffett JR, Moore RA, Viola RE, Namboodiri MA, Jacobowitz DM (2004) Immunohistochemical localisation of aspartoacylase in the rat central nervous system. J Comp Neurol 472:318–329

    Article  CAS  PubMed  Google Scholar 

  • Madhavarao CN, Arun P, Moffett JR, Szucs S, Surendran S, Matalon R et al (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci USA 102:5221–5226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahloudji M, Daneshbod K, Karjoo M (1970) Familial spongy degeneration of the brain. Arch Neurol 22:294–298

    Article  CAS  PubMed  Google Scholar 

  • Martin E, Capone A, Schneider J, Hennig J, Thiel T (2001) Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy? Ann Neurol 49:518–521

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Rady PL, Platt KA, Skinner HB, Quast MJ, Campbell GA et al (2000) Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med 2:165–175

    Article  CAS  PubMed  Google Scholar 

  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103

    Google Scholar 

  • Mattan NS, Ghiani CA, Lloyd M, Matalon R, Bok D, Casaccia P et al (2010) Aspartoacylase deficiency affects early postnatal development of oligodendrocytes and myelination. Neurobiol Dis 40:432–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehta V, Namboodiri MA (1995) N-acetylaspartate as an acetyl source in the nervous system. Brain Res Mol Brain Res 31:151–157

    Article  CAS  PubMed  Google Scholar 

  • Mersmann N, Tkachev D, Jelinek R, Roth PT, Mobius W, Ruhwedel T et al (2011) Aspartoacylase-lacZ knockin mice: an engineered model of Canavan disease. PLoS One 6(5):e20336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moffett JR, Namboodiri MA (1995) Differential distribution of N-acetylaspartylglutamate and N-acetylaspartate immunoreactivities in rat forebrain. J Neurocytol 24:409–433

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Namboodiri AM (2006) Expression of N-acetylaspartate and N-acetylaspartylglutamate in the nervous system. Adv Exp Med Biol 576:7–26

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Namboodiri MA, Cangro CB, Neale JH (1991) Immunohistochemical localisation of N-acetylaspartate in rat brain. Neuroreport 2:131–134

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Namboodiri MA, Neale JH (1993) Enhanced carbodiimide fixation for immunohistochemistry: application to the comparative distributions of N-acetylaspartylglutamate and N-acetylaspartate immunoreactivities in rat brain. J Histochem Cytochem 41:559–570

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Arun P, Ariyannur PS, Garbern JY, Jacobowitz DM, Namboodiri AM (2011) Extensive aspartoacylase expression in the rat central nervous system. Glia 59:1414–1434

    Article  PubMed Central  PubMed  Google Scholar 

  • Namboodiri AM, Moffett JR, Arun P, Mathew R, Namboodiri S, Potti A et al (2006) Defective myelin lipid synthesis as a pathogenic mechanism of Canavan disease. Adv Exp Med Biol 576:145–163

    Article  CAS  PubMed  Google Scholar 

  • Narayana PA, Doyle TJ, Lai D, Wolinsky JS (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43:56–571

    Article  CAS  PubMed  Google Scholar 

  • Ormel L, Stensrud MJ, Bergersen LH, Gundersen V (2012a)  VGLUT1 is localized in astrocytic processes in several brain regions. Glia 60:229–238

    Google Scholar 

  • Ormel L, Stensrud MJ, Chaudhry FA, Gundersen V (2012b) A distinct set of synaptic-like microvesicles in atroglial cells contain VGLUT3. Glia 60:1289–1300

    Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392

    Article  CAS  PubMed  Google Scholar 

  • Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546

    Google Scholar 

  • Reichelt KL, Fonnum F (1969) Subcellular localisation of N-acetyl-aspartyl-glutamate, N-acetyl-glutamate and glutathione in brain. J Neurochem 16:1409–1416

    Article  CAS  PubMed  Google Scholar 

  • Rinholm JE, Bergersen LH (2012) Neuroscience: the wrap that feeds neurons. Nature 487:435–436

    Article  CAS  PubMed  Google Scholar 

  • Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D (2011) Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 31:538–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuff N, Ezekiel F, Gamst AC, Amend DL, Capizzano AA, Maudsley AA et al (2001) Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med 45:899–907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localisation of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45

    Article  CAS  PubMed  Google Scholar 

  • Soher BJ, van Zijl PC, Duyn JH, Barker PB (1996) Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 35:356–363

    Article  CAS  PubMed  Google Scholar 

  • Sparrow N, Manetti ME, Bott M, Fabianac T, Petrilli A, Bates ML et al (2012) The actin-severing protein cofilin is downstream of neuregulin signaling and is essential for Schwann cell myelination. J Neurosci 32:5284–5297

    Google Scholar 

  • Surendran S, Matalon KM, Tyring SK, Matalon R (2003) Molecular basis of Canavan’s disease: from human to mouse. J Child Neurol 18:604–610

    Article  PubMed  Google Scholar 

  • Tallan HH, Moore S, Stein WH (1956) N-Acetyl-l-aspartic acid in brain. J Biol Chem 219:257–264

    CAS  PubMed  Google Scholar 

  • Tedeschi G, Bertolino A, Righini A, Campbell G, Raman R, Duyn JH et al (1995) Brain regional distribution pattern of metabolite signal intensities in young adults by proton magnetic resonance spectroscopic imaging. Neurology 45:1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Traka M, Wollmann RL, Cerda SR, Dugas J, Barres BA, Popko B (2008) Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration of the CNS. J Neurosci 28:11537–11549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Truckenmiller ME, Namboodiri MA, Brownstein MJ, Neale JH (1985) N-Acetylation of l-aspartate in the nervous system: differential distribution of a specific enzyme. J Neurochem 45:1658–1662

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Coyle JT (1995) N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46:531–540

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Matalon R, Bhatia G, Wu G, Li H, Liu T et al (2007) Bimodal occurrence of aspartoacylase in myelin and cytosol of brain. J Neurochem 101:448–457

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Leone P, Wu G, Francis JS, Li H, Jain MR et al (2009) Myelin lipid abnormalities in the aspartoacylase-deficient tremor rat. Neurochem Res 34:138–148

    Article  PubMed  Google Scholar 

  • Wevers RA, Engelke U, Wendel U, de Jong JG, Gabreels FJ, Heerschap A (1995) Standardized method for high-resolution 1H-NMR of cerebrospinal fluid. Clin Chem 41:744–751

    CAS  PubMed  Google Scholar 

  • Wiame E, Tyteca D, Pierrot N, Collard F, Amyere M, Noel G et al (2010) Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochem J 425:127–136

    Article  CAS  Google Scholar 

  • Wirt SE, Adler AS, Gebala V, Weimann JM, Schaffer BE, Saddic LA et al (2010) G1 arrest and differentiation can occur independently of Rb family function. J Cell Biol  191:809–825

    Google Scholar 

  • Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131:288–303

    Google Scholar 

Download references

Acknowledgments

We thank Anna-Bjørg Bore for technical assistance, especially with the Woelcke staining. We thank Sylvia Szucs for help with handling the Canavan mice and the ASPA antibodies. The NAA antibodies were a kind gift from John R. Moffett and Joseph H. Neale (Georgetown University, Washington, US). This work was supported by grants from the Research Council of Norway (grant number 170441/V40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidar Gundersen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5906 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordengen, K., Heuser, C., Rinholm, J.E. et al. Localisation of N-acetylaspartate in oligodendrocytes/myelin. Brain Struct Funct 220, 899–917 (2015). https://doi.org/10.1007/s00429-013-0691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0691-7

Keywords

Navigation