Skip to main content
Log in

A quantitative analysis of cellular and synaptic localization of GAT-1 and GAT-3 in rat neocortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

High-affinity plasma membrane GABA transporters GAT-1 and GAT-3 contribute to the modulation of GABA-mediated inhibition in adult mammalian cerebral cortex. How GATs regulate inhibition in neocortical circuits remains however poorly understood for the lack of information on key localizational features. In this study, we used quantitative pre- and post-embedding electron microscopy to define the distribution of GAT-1 and GAT-3 in elements contributing to synapses and to unveil their ultrastructural organization at adult cortical GABAergic synapses. GAT-1 and GAT-3 were found in both neuronal and astrocytic processes: GAT-1 was prevalently segregated in neuronal elements and in profiles contributing to synapses, whereas GAT-3 was mostly expressed in astrocytes and did not exhibit a preferential distribution in elements contributing to synapses. Analysis of the ultrastructural distribution of GAT-1 and GAT-3 in the plasma membrane of axon terminals and perisynaptic astrocytic processes of symmetric synapses in relation to the active zone revealed that GAT-1 was more concentrated in restricted perisynaptic and extrasynaptic regions, whereas GAT-3 was prominent in extrasynaptic areas. These studies provide a basis for understanding the role GAT-1 and GAT-3 play in the modulation of GABA-mediated phasic and tonic inhibition in cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbour B, Hausser M (1997) Intersynaptic diffusion of neurotransmitters. Trends Neurosci 20:377–384

    Article  CAS  PubMed  Google Scholar 

  • Barthó P, Payne JA, Freund TF, Acsády L (2004) Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei. Eur J Neurosci 20:965–975

    Article  PubMed Central  PubMed  Google Scholar 

  • Beaulieu C, Campistron G, Crevier C (1994) Quantitative aspects of the GABA circuitry in the primary visual cortex of the adult rat. J Comp Neurol 339:559–572

    Article  CAS  PubMed  Google Scholar 

  • Blatow M, Rozov A, Katona I, Hormuzdi SG, Meyer AH, Whittington MA, Caputi A, Monyer H (2003) A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38:805–817

    Article  CAS  PubMed  Google Scholar 

  • Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  CAS  PubMed  Google Scholar 

  • Borden LA, Smith KE, Hartig PR, Brancheck TA, Weinshank RL (1992) Molecular heterogeneity of the γ-aminobutyric acid (GABA) transport system. J Biol Chem 267:21098–21104

    CAS  PubMed  Google Scholar 

  • Borden LA, Dhar TGM, Smith KE, Branchek TA, Gluchowskic C, Weinshank RL (1994) Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Channels 2:207–213

    CAS  Google Scholar 

  • Bragina L, Marchionni I, Omrani A, Cozzi A, Pellegrini-Giampietro DE, Cherubini E, Conti F (2008) GAT-1 regulates both tonic and phasic GABA(A) receptor-mediated inhibition in the cerebral cortex. J Neurochem 105:1781–1793

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Chrobak JJ (1995) Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol 5:504–510

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, Irwin N, Aoki C, Rosenberg PA (2004) The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci 24:1136–1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cherubini E, Conti F (2001) Generating diversity at GABAergic synapses. Trends Neurosci 24:155–162

    Article  CAS  PubMed  Google Scholar 

  • Clark JA, Deutch AY, Gallipoli PZ, Amara SG (1992) Functional expression and CNS distribution of a β-alanine-sensitive neuronal GABA transporter. Neuron 9:337–348

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Rustioni A, Petrusz P, Towle AC (1987) Glutamate-positive neurons in the somatic sensory cortex of rats and monkeys. J Neurosci 7:1887–1901

    CAS  PubMed  Google Scholar 

  • Conti F, Melone M, De Biasi S, Minelli A, Brecha NC, Ducati A (1998) Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 396:51–63

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Vitellaro Zuccarello L, Barbaresi P, Minelli A, Brecha NC, Melone M (1999) Neuronal, glial, and epithelial localization of γ-aminobutyric acid transporter 2, a high-affinity γ-aminobutyric acid plasma membrane transporter, in the cerebral cortex and neighboring structures. J Comp Neurol 409:482–494

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 45:196–212

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Melone M, Fattorini G, Bragina L, Ciappelloni S (2011) A Role for GAT-1 in presynaptic GABA homeostasis? Front Cell Neurosci 5:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Cristóvão-Ferreira S, Navarro G, Brugarolas M, Pérez-Capote K, Vaz SH, Fattorini G, Conti F, Lluis C, Ribeiro JA, McCormick PJ, Casadó V, Franco R, Sebastião AM (2013) A1R-A2AR heteromers coupled to Gs and G i/0 proteins modulate GABA transport into astrocytes. Purinergic Signal. doi:10.1007/s11302-013-9364-5

    PubMed Central  PubMed  Google Scholar 

  • Dalby NO (2000) GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology 39:2399–2407

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J, Farinas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563–607

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J, Gonzalez-Albo MC (1998) Chandelier cell axons are immunoreactive for GAT-1 in the human neocortex. NeuroReport 9:467–470

    Article  CAS  PubMed  Google Scholar 

  • Dingledine R, Korn SJ (1985) γ-Aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice. J Physiol 366:387–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL (1995) Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Brain Res Mol Brain Res 33:7–21

    Article  CAS  PubMed  Google Scholar 

  • Engel D, Schmitz D, Gloveli T, Frahm C, Heinemann U, Draguhn A (1998) Laminar difference in GABA uptake and GAT-1 expression in rat CA1. J Physiol 512:643–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick D, Lund JS, Schmechel DE, Towle AC (1987) Distribution of GABAergic neurons and axon terminals in the macaque striate cortex. J Comp Neurol 264:73–91

    Article  CAS  PubMed  Google Scholar 

  • Gonchar Y, Pang L, Malitschek B, Bettler B, Burkhalter A (2001) Subcellular localization of GABA(B) receptor subunits in rat visual cortex. J Comp Neurol 431:182–197

    Article  CAS  PubMed  Google Scholar 

  • Grossman TR, Nelson N (2002) Differential effect of pH on sodium binding by the various GABA transporters expressed in Xenopus oocytes. FEBS Lett 527:125–132

    Article  CAS  PubMed  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA-transporter. Science 249:1303–1306

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Stella SL, Hirano AA, Brecha NC (2009) Plasmalemmal and vesicular γ-aminobutyric acid transporter expression in the developing mouse retina. J Comp Neurol 512:6–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamann M, Rossi DJ, Attwell D (2002) Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33:625–633

    Article  CAS  PubMed  Google Scholar 

  • Héja L, Barabás P, Nyitrai G, Kékesi KA, Lasztóczi B, Toke O, Tárkányi G, Madsen K, Schousboe A, Dobolyi A, Palkovits M, Kardos J (2009) Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PLoS One 4:e7153

    Article  PubMed Central  PubMed  Google Scholar 

  • Houser CR, Hendry SHC, Jones EG, Peters A (1984) GABA neurons in the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, functional properties of cortical cells, vol 2. Plenum, New York, pp 63–90

    Google Scholar 

  • Isaacson JS (2000) Spillover in the spotlight. Curr Biol 10:475–477

    Article  Google Scholar 

  • Isaacson JS, Scanziani M (2011) How inhibition shapes cortical activity. Neuron 72:231–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I (2003) GABA transporter-1 (GAT1) deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol 190:2690–2701

    Article  Google Scholar 

  • Jin XT, Paré JF, Smith Y (2012) GABA transporter subtype 1 and GABA transporter subtype 3 modulate glutamatergic transmission via activation of presynaptic GABA(B) receptors in the rat globus pallidus. Eur J Neurosci 36:2482–2492

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones EG (1993) GABAergic neurons and their role in cortical plasticity. Cereb Cortex 3:361–372

    Article  CAS  PubMed  Google Scholar 

  • Kanner B (1997) Structure and function of GABA reuptake systems. In: Enna SJ, Bowery NG (eds) The GABA receptors. Humana Press, Totowa, pp 1–9

    Chapter  Google Scholar 

  • Keros S, Hablitz JJ (2005) Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J Neurophysiol 94:2073–2085

    Article  CAS  PubMed  Google Scholar 

  • Kersanté F, Rowley SCS, Pavlov I, Gutìerrez-Mecinas M, Semyanov A, Reul JMHM, Walker MC, Linthorst ACE (2013) A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J Physiol 591:2429–2441

    Article  PubMed Central  PubMed  Google Scholar 

  • Kharazia VN, Weinberg RJ (1999) Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat. J Comp Neurol 412:292–302

    Article  CAS  PubMed  Google Scholar 

  • Kinney GA (2005) GAT-3 transporters regulate inhibition in the neocortex. J Neurophysiol 94:4533–4537

    Article  CAS  PubMed  Google Scholar 

  • Kinney GA, Spain WJ (2002) Synaptically evoked GABA transporter currents in neocortical glia. J Neurophysiol 113:2899–2908

    Article  Google Scholar 

  • Kisvarday ZF, Gulsays D, Beroukas JB, North JB, Chubb IW, Somogyi P (1990) Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. Brain 113:793–812

    Article  PubMed  Google Scholar 

  • Krnjevic K (1997) Role of GABA in cerebral cortex. Can J Physiol Pharm 75:439–451

    Article  CAS  Google Scholar 

  • Kullmann DM (2000) Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. Prog Brain Res 125:339–351

    Article  CAS  PubMed  Google Scholar 

  • Lam DMK, Fei J, Zhang XY, Tam ACW, Zu LH, Huang F, King SC, Guo LH (1993) Molecular cloning and structure of the human (GABATHG) GABA transport gene. Mol Brain Res 19:227–232

    Article  CAS  PubMed  Google Scholar 

  • Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. J Biol Chem 268:2106–2112

    CAS  PubMed  Google Scholar 

  • Luján R (2004) Electron microscopic studies of receptor localization. Methods Mol Biol 259:123–136

    PubMed  Google Scholar 

  • Mager S, Naeve J, Quick M, Labarca C, Davidson N, Lester H (1993) Steady states, charge movement, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10:177–188

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Wang Z, Huguenard J (1993) Neurotransmitter control of neocortical neuronal activity and excitability. Cereb Cortex 3:387–398

    Article  CAS  PubMed  Google Scholar 

  • Melone M, Cozzi A, Pellegrini-Giampietro DE, Conti F (2003) Transient focal ischemia triggers neuronal expression of GAT-3 in the rat perilesional cortex. Neurobiol Dis 14:120–132

    Article  CAS  PubMed  Google Scholar 

  • Melone M, Barbaresi P, Fattorini G, Conti F (2005) Neuronal localization of the GABA transporter GAT-3 in human cerebral cortex: a procedural artifact? J Chem Neuroanat 30:45–54

    Article  CAS  PubMed  Google Scholar 

  • Melone M, Bellesi M, Conti F (2009) Synaptic localization of GLT-1a in the rat somatic sensory cortex. Glia 57:108–117

    Article  PubMed  Google Scholar 

  • Melone M, Bellesi M, Ducati A, Iacoangeli M, Conti F (2011) Cellular and synaptic localization of EAAT2a in human cerebral cortex. Front Neuroanat 4:151

    Article  PubMed Central  PubMed  Google Scholar 

  • Minelli A, Brecha NC, Karschin C, De Biasi S, Conti F (1995) GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci 15:7734–7746

    CAS  PubMed  Google Scholar 

  • Minelli A, De Biasi S, Brecha NC, Vitellaro Zuccarello L, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255–6264

    CAS  PubMed  Google Scholar 

  • Minelli A, Barbaresi P, Reimer RJ, Edwards RH, Conti F (2001) The glial glutamate transporter GLT-1 is localized both in the vicinity of and at distance from axon terminals in the rat cerebral cortex. Neuroscience 108:51–59

    Article  CAS  PubMed  Google Scholar 

  • Minelli A, Barbaresi P, Conti F (2003) Postnatal development of high-affinity plasma membrane transporters GAT-2 and GAT-3 in the rat cerebral cortex. Dev Brain Res 142:7–18

    Article  CAS  Google Scholar 

  • Mitchell SJ, Silver RA (2000) GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus. J Neurosci 20:8651–8658

    CAS  PubMed  Google Scholar 

  • Nelson H, Mandiyan S, Nelson N (1990) Cloning of the human GABA transporter. FEBS Lett 269:181–184

    Article  CAS  PubMed  Google Scholar 

  • Ortinski PI, Turner JR, Barberis A, Motamedi G, Yasuda RP, Wolfe BB, Kellar KJ, Vicini S (2006) Deletion of the GABA(A) receptor alpha1 subunit increases tonic GABA(A) receptor current: a role for GABA uptake transporters. J Neurosci 26:9323–9331

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Palay SL, deF Webster H (1991) The fine structure of the nervous system neurons and their supportive cells. Oxford University Press, New York

    Google Scholar 

  • Phend KD, Weinberg RJ, Rustioni A (1992) Techniques to optimize post-embedding single and double staining for amino acid neurotransmitters. J Histochem Cytochem 40:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Phend KD, Rustioni A, Weinberg RJ (1995) An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. J Histochem Cytochem 43:283–292

    Article  CAS  PubMed  Google Scholar 

  • Racz B, Weinberg RJ (2004) The subcellular organization of cortactin in hippocampus. J Neurosci 24:10310–10317

    Article  CAS  PubMed  Google Scholar 

  • Sarup A, Larsson OM, Bolvig T, Frolund B, Krogsgaard-Larsen P, Schousboe A (2003) Effects of 3-hydoxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazol (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters. Neurochem Int 43:445–451

    Article  CAS  PubMed  Google Scholar 

  • Scanziani M (2000) GABA spillover activates postsynaptic GABA(B) receptor to control rhythmic hippocampal activity. Neuron 25:673–681

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A (2000) Pharmacological and functional characterization of astrocytic GABA transport: a short review. Neurochem Res 25:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Semyanov A, Walker MC, Kullmann DM (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci 6:484–490

    CAS  PubMed  Google Scholar 

  • Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS (2011) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15:70–80

    Article  PubMed Central  PubMed  Google Scholar 

  • Sloper JJ, Johnson P, Powell TP (1980) Selective degeneration of interneurons in the motor cortex of infant monkeys following controlled hypoxia: a possible cause of epilepsy. Brain Res 198:204–209

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Martin KAC (1985) Cortical circuitry underlying inhibitory processes in cat area 17. In: Rose D, Dobson VG (eds) Models of the visual cortex. Wiley, Chichester (UK), pp 514–523

    Google Scholar 

  • Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135

    Article  CAS  PubMed  Google Scholar 

  • Sur M, Leamey CA (2001) Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2:251–262

    Article  CAS  PubMed  Google Scholar 

  • Thompson SM, Gahwiler BH (1992) Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol 67:1670–1698

    Google Scholar 

  • Tyler WJ, Pozzo-Miller LD (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 21:4249–4258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Valtschanoff JG, Weinberg RJ (2001) Laminar organization of the NMDA receptor complex within the postsynaptic density. J Neurosci 21:1211–1217

    CAS  PubMed  Google Scholar 

  • Waldmeier PC, Wicki P, Feldtrauer JJ, Mickel SJ, Bittiger H, Baumann PA (2012) GABA and glutamate release affected by GABAB receptor antagonists with similar potency: no evidence for pharmacologically different presynaptic receptors. Br J Pharmacol 113:1515–1521

    Article  Google Scholar 

  • Wilson FA, O’Scalaidhe SP, Goldman-Rakic PS (1994) Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. PNAS 91:4009–4013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Wang W, Richerson GB (2003) Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol 89:2021–2034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funds from Ministero dell’Università e della Ricerca (PRIN 2010/2011) to FC. We are grateful to NC Brecha (University of California at Los Angeles, CA) for his generous gift of GAT-1 and GAT-3 antibodies; and to E Cherubini (SISSA, Trieste, I) for critically reading a previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiorenzo Conti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melone, M., Ciappelloni, S. & Conti, F. A quantitative analysis of cellular and synaptic localization of GAT-1 and GAT-3 in rat neocortex. Brain Struct Funct 220, 885–897 (2015). https://doi.org/10.1007/s00429-013-0690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0690-8

Keywords

Navigation