Skip to main content
Log in

Selective presence of a giant saccular organelle in the axon initial segment of a subpopulation of layer V pyramidal neurons

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Recently it has been shown that a giant saccular organelle (GSO) of unknown function is present in the axon initial segment (AIS) of an uncharacterized population of pyramidal cells of the rodent neocortex. Using tract-tracing methods and immunocytochemistry, in the present study we show that in rodents this GSO is present in the AIS of subpopulations of layer V pyramidal neurons projecting to various subcortical, non-thalamic targets, including the spinal cord. GSO-containing neurons express SMI32 and some of them are under the control of the Thy-1 gene promoter. In addition, our results demonstrate that the GSO expresses the inositol 1,4,5-triphosphate receptor 1 (IP3R1) and the sarco (endo) plasmic reticulum Ca2+ ATPase 2, both in rodent and human neocortex. These results indicate the involvement of the GSO in the regulation of Ca2+ levels in the AIS in a particular subpopulation of layer V neurons that give rise to subcortical non-thalamic descending projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso-Nanclares L, Kastanauskaite A, Rodriguez JR, Gonzalez-Soriano J, Defelipe J (2011) A stereological study of synapse number in the epileptic human hippocampus. Front Neuroanat 5:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Angulo MC, Staiger JF, Rossier J, Audinat E (2003) Distinct local circuits between neocortical pyramidal cells and fast-spiking interneurons in young adult rats. J Neurophysiol 89(2):943–953

    Article  PubMed  Google Scholar 

  • Arellano JI, Munoz A, Ballesteros-Yanez I, Sola RG, DeFelipe J (2004) Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain 127(Pt 1):45–64

    Article  CAS  PubMed  Google Scholar 

  • Arion D, Sabatini M, Unger T, Pastor J, Alonso-Nanclares L, Ballesteros-Yanez I, Garcia Sola R, Munoz A, Mirnics K, DeFelipe J (2006) Correlation of transcriptome profile with electrical activity in temporal lobe epilepsy. Neurobiol Dis 22(2):374–387

    Article  CAS  PubMed  Google Scholar 

  • Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45(2):207–221

    Article  CAS  PubMed  Google Scholar 

  • Bannai H, Inoue T, Nakayama T, Hattori M, Mikoshiba K (2004) Kinesin dependent, rapid, bi-directional transport of ER sub-compartment in dendrites of hippocampal neurons. J Cell Sci 117(Pt 2):163–175

    Article  CAS  PubMed  Google Scholar 

  • Bas Orth C, Schultz C, Muller CM, Frotscher M, Deller T (2007) Loss of the cisternal organelle in the axon initial segment of cortical neurons in synaptopodin-deficient mice. J Comp Neurol 504(5):441–449

    Article  PubMed  Google Scholar 

  • Bender KJ, Trussell LO (2009) Axon initial segment Ca2 + channels influence action potential generation and timing. Neuron 61(2):259–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bender KJ, Uebele VN, Renger JJ, Trussell LO (2012) Control of firing patterns through modulation of axon initial segment T-type calcium channels. J Physiol 590(Pt 1):109–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benedeczky I, Molnar E, Somogyi P (1994) The cisternal organelle as a Ca(2+)-storing compartment associated with GABAergic synapses in the axon initial segment of hippocampal pyramidal neurones. Exp Brain Res 101(2):216–230

    Article  CAS  PubMed  Google Scholar 

  • Blaustein MP, Golovina VA (2001) Structural complexity and functional diversity of endoplasmic reticulum Ca(2+) stores. Trends Neurosci 24(10):602–608

    Article  CAS  PubMed  Google Scholar 

  • Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signalling–an overview. Semin Cell Dev Biol 12(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Copray JC, Liem RS, Kernell D (1996) Calreticulin expression in spinal motoneurons of the rat. J Chem Neuroanat 11(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) Axon physiology. Physiol Rev 91(2):555–602

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Alonso J, Aguado T, Wu CS, Palazuelos J, Hofmann C, Garcez P, Guillemot F, Lu HC, Lutz B, Guzman M, Galve-Roperh I (2012) The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis. J Neurosci 32(47):16651–16665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans MD, Sammons RP, Lebron S, Dumitrescu AS, Watkins TB, Uebele VN, Renger JJ, Grubb MS (2013) Calcineurin signaling mediates activity-dependent relocation of the axon initial segment. J Neurosci 33(16):6950–6963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51

    Article  CAS  PubMed  Google Scholar 

  • Gatti G, Trifari S, Mesaeli N, Parker JM, Michalak M, Meldolesi J (2001) Head-to-tail oligomerization of calsequestrin: a novel mechanism for heterogeneous distribution of endoplasmic reticulum luminal proteins. J Cell Biol 154(3):525–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grubb MS, Burrone J (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465(7301):1070–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grubb MS, Shu Y, Kuba H, Rasband MN, Wimmer VC, Bender KJ (2011) Short- and long-term plasticity at the axon initial segment. J Neurosci 31(45):16049–16055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hallman LE, Schofield BR, Lin CS (1988) Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat. J Comp Neurol 272(1):149–160

    Article  CAS  PubMed  Google Scholar 

  • Hattox AM, Nelson SB (2007) Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. J Neurophysiol 98(6):3330–3340

    Article  PubMed  Google Scholar 

  • Inda MC, Defelipe J, Munoz A (2007) The distribution of chandelier cell axon terminals that express the GABA plasma membrane transporter GAT-1 in the human neocortex. Cereb Cortex 17(9):2060–2071

    Article  CAS  PubMed  Google Scholar 

  • Jedlicka P, Vlachos A, Schwarzacher SW, Deller T (2008) A role for the spine apparatus in LTP and spatial learning. Behav Brain Res 192(1):12–19

    Article  PubMed  Google Scholar 

  • Jones EG, Powell TP (1969) Synapses on the axon hillocks and initial segments of pyramidal cell axons in the cerebral cortex. J Cell Sci 5(2):495–507

    CAS  PubMed  Google Scholar 

  • Klein BG, Mooney RD, Fish SE, Rhoades RW (1986) The structural and functional characteristics of striate cortical neurons that innervate the superior colliculus and lateral posterior nucleus in hamster. Neuroscience 17(1):57–78

    Article  CAS  PubMed  Google Scholar 

  • Koester SE, O’Leary DD (1993) Connectional distinction between callosal and subcortically projecting cortical neurons is determined prior to axon extension. Dev Biol 160(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Kole MH, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73(2):235–247

    Article  CAS  PubMed  Google Scholar 

  • Kosaka T (1980) The axon initial segment as a synaptic site: ultrastructure and synaptology of the initial segment of the pyramidal cell in the rat hippocampus (CA3 region). J Neurocytol 9(6):861–882

    Article  CAS  PubMed  Google Scholar 

  • Kuba H (2012) Structural tuning and plasticity of the axon initial segment in auditory neurons. J Physiol 590(Pt 22):5571–5579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuba H, Oichi Y, Ohmori H (2010) Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature 465(7301):1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Larkman A, Mason A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes. J Neurosci 10(5):1407–1414

    CAS  PubMed  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500(Pt 2):409–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molnar Z, Cheung AF (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55(2):105–115

    Article  CAS  PubMed  Google Scholar 

  • Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8(6):427–437

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131(6 Pt 2):1715–1726

    Article  CAS  PubMed  Google Scholar 

  • O’Leary DD, Stanfield BB (1985) Occipital cortical neurons with transient pyramidal tract axons extend and maintain collaterals to subcortical but not intracortical targets. Brain Res 336(2):326–333

    Article  PubMed  Google Scholar 

  • O’Leary DD, Stanfield BB (1986) A transient pyramidal tract projection from the visual cortex in the hamster and its removal by selective collateral elimination. Brain Res 392(1–2):87–99

    Article  PubMed  Google Scholar 

  • Palay SL, Sotelo C, Peters A, Orkand PM (1968) The axon hillock and the initial segment. J Cell Biol 38(1):193–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SH, Blackstone C (2010) Further assembly required: construction and dynamics of the endoplasmic reticulum network. EMBO Rep 11(7):515–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam

    Google Scholar 

  • Peters A, Proskauer CC, Kaiserman-Abramof IR (1968) The small pyramidal neuron of the rat cerebral cortex. The axon hillock and initial segment. J Cell Biol 39(3):604–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffenbach KT, Lee AS (2011) The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol 23(2):150–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porrero C, Rubio-Garrido P, Avendano C, Clasca F (2010) Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice. Brain Res 1345:59–72

    Article  CAS  PubMed  Google Scholar 

  • Rasband MN (2010) The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci 11(8):552–562

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ponce D, Blazquez-Llorca L, Defelipe J, Garrido JJ, Munoz A (2011a) Colocalization of {alpha}-actinin and synaptopodin in the pyramidal cell axon initial segment. Cereb Cortex 22(7):1648–1661

    Article  PubMed  Google Scholar 

  • Sanchez-Ponce D, DeFelipe J, Garrido JJ, Munoz A (2011b) In vitro maturation of the cisternal organelle in the hippocampal neuron’s axon initial segment. Mol Cell Neurosci 48(1):104–116

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Jha S, Liu F, Akella T, McCullough LD, Rasband MN (2009) Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci 29(42):13242–13254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shim SY, Wang J, Asada N, Neumayer G, Tran HC, Ishiguro K, Sanada K, Nakatani Y, Nguyen MD (2008) Protein 600 is a microtubule/endoplasmic reticulum-associated protein in CNS neurons. J Neurosci 28(14):3604–3614

    Article  CAS  PubMed  Google Scholar 

  • Sloper JJ, Powell TP (1979) A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices. Philos Trans R Soc Lond B Biol Sci 285(1006):173–197

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Nunzi MG, Gorio A, Smith AD (1983) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res 259(1):137–142

    Article  CAS  PubMed  Google Scholar 

  • Sorensen SA, Bernard A, Menon V, Royall JJ, Glattfelder KJ, Hirokawa K, Mortrud M, Miller JA, Zeng H, Hohmann JG, Jones AR, Lein ES (2013) Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cereb Cortex. doi:10.1093/cercor/bht243

    PubMed  Google Scholar 

  • Tsiola A, Hamzei-Sichani F, Peterlin Z, Yuste R (2003) Quantitative morphologic classification of layer 5 neurons from mouse primary visual cortex. J Comp Neurol 461(4):415–428

    Article  PubMed  Google Scholar 

  • Voelker CC, Garin N, Taylor JS, Gahwiler BH, Hornung JP, Molnar Z (2004) Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb Cortex 14(11):1276–1286

    Article  PubMed  Google Scholar 

  • Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J Neurosci 28(29):7260–7272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Y, Maureira C, Liu X, McCormick D (2010) P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons. J Neurosci 30(35):11858–11869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare no conflict of interest. This work was supported by grants from the following entities: SAF 2010-18218 to AM and BFU2012-34963 to JD from the Ministerio de Economía y Competitividad; CIBERNED (CB06/05/0066; Spain); and from the Cajal Blue Brain Project (Spanish partner of the Blue Brain Project initiative from EPFL). We thank Dr. Rasband (Dept. of Neuroscience, Baylor College of Medicine, Houston, USA) for providing antibodies to βIV spectrin. We also thank Dr. Guzmán and Dr. Galve-Roperh (Dept. Biochemistry, Fac. Biology, Complutense University, Madrid, Spain) for providing brain sections from Thy1-eYFP-H mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Muñoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antón-Fernández, A., Rubio-Garrido, P., DeFelipe, J. et al. Selective presence of a giant saccular organelle in the axon initial segment of a subpopulation of layer V pyramidal neurons. Brain Struct Funct 220, 869–884 (2015). https://doi.org/10.1007/s00429-013-0689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0689-1

Keywords

Navigation