Skip to main content

Advertisement

Log in

Orexins (hypocretins) contribute to fear and avoidance in rats exposed to a single episode of footshocks

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Orexins (hypocretins) are peptides that have been shown to regulate behavioral arousal and wakefulness. Recent evidence indicates that orexin neurons are activated by stress and that orexins play a role in anxiety. The present paper describes a series of experiments that examined whether orexins are involved in the anxiety that resulted from exposing rats to an acute episode of footshocks (5 × 2 s of 1.5 mA shocks). We found that prepro-orexin (ppOX) mRNA was elevated in rats at 6 and 14 days after exposure to footshock and that ppOX mRNA levels were correlated with fear at 14 days post-shock. Systemic injections of the non-selective dual orexin receptor antagonist TCS-1102 (10 and 20 mg/kg, i.p.) were found to decrease fear and anxiety in rats 14 days after exposure to footshock. We also found that rats that exhibited a high level of immobility to a novel tone the day after the footshock episode (high responders, HR) showed significantly elevated levels of ppOX mRNA at 14 days post-shock compared to control rats. Furthermore, TCS-1102 (10 mg/kg, i.p.) was found to have anxiolytic effects that were specific for HR when tested in the elevated T-maze. This study provides evidence linking the orexin system to the anxiety produced by exposure of rats to a single episode of footshocks. It also provides preclinical evidence in support of the use of orexin antagonists for the treatment of anxiety in response to an acute episode of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bergman JM, Roecker AJ, Mercer SP, Bednar RA, Reiss DR, Ransom RW, Meacham Harrell C, Pettibone DJ, Lemaire W, Murphy KL, Li C, Prueksaritanont T, Winrow CJ, Renger JJ, Koblan KS, Hartman GD, Coleman PJ (2008) Proline bis-amides as potent dual orexin receptor antagonists. Bioorg Med Chem Lett 18:1425–1430

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Espana RA, Vittoz NM (2010) Hypocretin/orexin in arousal and stress. Brain Res 1314:91–102

    Article  CAS  PubMed  Google Scholar 

  • Bonne O, Grillon C, Vythilingam M, Neumeister A, Charney DS (2004) Adaptive and maladaptive psychobiological responses to severe psychological stress: implications for the discovery of novel pharmacotherapy. Neurosci Biobehav Rev 28:65–94

    Article  PubMed  Google Scholar 

  • Boutrel B, de Lecea L (2008) Addiction and arousal: the hypocretin connection. Physiol Behav 93:947–951

    Article  CAS  PubMed  Google Scholar 

  • Boutrel B, Cannella N, de Lecea L (2010) The role of hypocretin in driving arousal and goal-oriented behaviors. Brain Res 1314:103–111

    Article  CAS  PubMed  Google Scholar 

  • Bruijnzeel AW, Stam R, Wiegant VM (2001a) Effect of a benzodiazepine receptor agonist and corticotropin-releasing hormone receptor antagonists on long-term foot-shock-induced increase in defensive withdrawal behavior. Psychopharmacology 158:132–139

    Article  CAS  PubMed  Google Scholar 

  • Bruijnzeel AW, Stam R, Wiegant VM (2001b) LY354740 attenuates the expression of long-term behavioral sensitization induced by a single session of foot shocks. Eur J Pharmacol 426:77–80

    Article  CAS  PubMed  Google Scholar 

  • Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29:1193–1205

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li Y, Li S, Kirouac GJ (2012) Early fear as a predictor of avoidance in a rat model of post-traumatic stress disorder. Behav Brain Res 226:112–117

    Article  PubMed  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327

    Article  PubMed Central  PubMed  Google Scholar 

  • de Paula Soares V, Vicente MA, Biojone C, Zangrossi H Jr, Guimaraes FS, Joca SR (2011) Distinct behavioral consequences of stress models of depression in the elevated T-maze. Behav Brain Res 225:590–595

    Article  PubMed  Google Scholar 

  • Espana RA, Valentino RJ, Berridge CW (2003) Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience 121:201–217

    Article  CAS  PubMed  Google Scholar 

  • Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M, Saper CB, Scammell TE (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662

    CAS  PubMed  Google Scholar 

  • Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci 15:177–182

    CAS  PubMed  Google Scholar 

  • Furlong TM, Vianna DM, Liu L, Carrive P (2009) Hypocretin/orexin contributes to the expression of some but not all forms of stress and arousal. Eur J Neurosci 30:1603–1614

    Article  PubMed  Google Scholar 

  • Graeff FG, Netto CF, Zangrossi H Jr (1998) The elevated T-maze as an experimental model of anxiety. Neurosci Biobehav Rev 23:237–246

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Aston-Jones G (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29:571–577

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559

    Article  CAS  PubMed  Google Scholar 

  • Heydendael W, Sharma K, Iyer V, Luz S, Piel D, Beck S, Bhatnagar S (2011) Orexins/hypocretins act in the posterior paraventricular thalamic nucleus during repeated stress to regulate facilitation to novel stress. Endocrinology 152(1):4738–4752. doi:10.1210/en.2011-1652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ida T, Nakahara K, Murakami T, Hanada R, Nakazato M, Murakami N (2000) Possible involvement of orexin in the stress reaction in rats. Biochem Biophys Res Commun 270:318–323

    Article  CAS  PubMed  Google Scholar 

  • Johnson PL, Truitt W, Fitz SD, Minick PE, Dietrich A, Sanghani S, Traskman-Bendz L, Goddard AW, Brundin L, Shekhar A (2010) A key role for orexin in panic anxiety. Nat Med 16:111–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson PL, Samuels BC, Fitz SD, Federici LM, Hammes N, Early MC, Truitt W, Lowry CA, Shekhar A (2012) Orexin 1 receptors are a novel target to modulate panic responses and the panic brain network. Physiol Behav 107:733–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, Fukuda Y, Kuwaki T (2003) Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 285:R581–R593

    PubMed  Google Scholar 

  • Kirouac GJ, Parsons MP, Li S (2005) Orexin (hypocretin) innervation of the paraventricular nucleus of the thalamus. Brain Res 1059:179–188

    Article  CAS  PubMed  Google Scholar 

  • Li S, Kirouac GJ (2008) Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J Comp Neurol 506:263–287

    Article  PubMed  Google Scholar 

  • Li Y, Li S, Sui N, Kirouac GJ (2009) Orexin-A acts on the paraventricular nucleus of the midline thalamus to inhibit locomotor activity in rats. Pharmacol Biochem Behav 93:506–514

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010a) Changes in emotional behavior produced by orexin microinjections in the paraventricular nucleus of the thalamus. Pharmacol Biochem Behav 95:121–128

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010b) Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats. Psychopharmacology 212:251–265

    Article  CAS  PubMed  Google Scholar 

  • Louvart H, Maccari S, Ducrocq F, Thomas P, Darnaudery M (2005) Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology 30:316–324

    Article  PubMed  Google Scholar 

  • Louvart H, Maccari S, Lesage J, Leonhardt M, Dickes-Coopman A, Darnaudery M (2006) Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinology 31:92–99

    Article  CAS  PubMed  Google Scholar 

  • Lungwitz EA, Molosh A, Johnson PL, Harvey BP, Dirks RC, Dietrich A, Minick P, Shekhar A, Truitt WA (2012) Orexin-A induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiol Behav 107:726–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mikics E, Baranyi J, Haller J (2008a) Rats exposed to traumatic stress bury unfamiliar objects—a novel measure of hyper-vigilance in PTSD models? Physiol Behav 94:341–348

    Article  CAS  PubMed  Google Scholar 

  • Mikics E, Toth M, Varju P, Gereben B, Liposits Z, Ashaber M, Halasz J, Barna I, Farkas I, Haller J (2008b) Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks. Psychoneuroendocrinology 33:1198–1210

    Article  PubMed  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    Article  CAS  PubMed  Google Scholar 

  • Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S (2011) Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology 61:336–346

    Article  CAS  PubMed  Google Scholar 

  • Parsons MP, Li S, Kirouac GJ (2007) Functional and anatomical connection between the paraventricular nucleus of the thalamus and dopamine fibers of the nucleus accumbens. J Comp Neurol 500:1050–1063

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    CAS  PubMed  Google Scholar 

  • Pinheiro SN, Del-Ben CM, Zangrossi H Jr, Graeff FG (2008) Anxiolytic and panicolytic effects of escitalopram in the elevated T-maze. J Psychopharmacol 22:132–137

    Article  CAS  PubMed  Google Scholar 

  • Rachalski A, Alexandre C, Bernard JF, Saurini F, Lesch KP, Hamon M, Adrien J, Fabre V (2009) Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins. J Neurosci 29:15575–15585

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Mormede P (1998) Stress and emotionality: a multidimensional and genetic approach. Neurosci Biobehav Rev 22:33–57

    Article  CAS  PubMed  Google Scholar 

  • Rau V, DeCola JP, Fanselow MS (2005) Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci Biobehav Rev 29:1207–1223

    Article  PubMed  Google Scholar 

  • Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Ishii Y, Halford JC, Blundell JE (2002) Orexins and appetite regulation. Neuropeptides 36:303–325

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Wright FL, Snow NF, Taylor LJ (2013) Orexin-1 receptor antagonism fails to reduce anxiety-like behaviour in either plus-maze-naive or plus-maze-experienced mice. Behav Brain Res 243:213–219

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto F, Yamada S, Ueta Y (2004) Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul Pept 118:183–191

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  CAS  PubMed  Google Scholar 

  • Sawai N, Ueta Y, Nakazato M, Ozawa H (2010) Developmental and aging change of orexin-A and -B immunoreactive neurons in the male rat hypothalamus. Neurosci Lett 468(1):51–55

    Article  CAS  PubMed  Google Scholar 

  • Siegmund A, Wotjak CT (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatry Res 41:848–860

    Article  Google Scholar 

  • Stam R (2007) PTSD and stress sensitisation: a tale of brain and body Part 1: human studies. Neurosci Biobehav Rev 31:530–557

    Article  PubMed  Google Scholar 

  • Steiner MA, Lecourt H, Jenck F (2012) The brain orexin system and almorexant in fear-conditioned startle reactions in the rat. Psychopharmacology 223:465–475

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Beuckmann CT, Shikata K, Ogura H, Sawai T (2005) Orexin-A (hypocretin-1) is possibly involved in generation of anxiety-like behavior. Brain Res 1044:116–121

    Article  CAS  PubMed  Google Scholar 

  • Taheri S, Zeitzer JM, Mignot E (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25:283–313

    Article  CAS  PubMed  Google Scholar 

  • Thompson JL, Borgland SL (2011) A role for hypocretin/orexin in motivation. Behav Brain Res 217:446–453

    Article  CAS  PubMed  Google Scholar 

  • van Dijken HH, Mos J, van der Heyden JA, Tilders FJ (1992a) Characterization of stress-induced long-term behavioural changes in rats: evidence in favor of anxiety. Physiol Behav 52:945–951

    Article  PubMed  Google Scholar 

  • Van Dijken HH, Tilders FJ, Olivier B, Mos J (1992b) Effects of anxiolytic and antidepressant drugs on long-lasting behavioural deficits resulting from one short stress experience in male rats. Psychopharmacology 109:395–402

    Article  PubMed  Google Scholar 

  • Viana MB, Tomaz C, Graeff FG (1994) The elevated T-maze: a new animal model of anxiety and memory. Pharmacol Biochem Behav 49:549–554

    Article  CAS  PubMed  Google Scholar 

  • Wall PM, Messier C (2001) Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci Biobehav Rev 25:275–286

    Article  CAS  PubMed  Google Scholar 

  • Winrow CJ, Tanis KQ, Reiss DR, Rigby AM, Uslaner JM, Uebele VN, Doran SM, Fox SV, Garson SL, Gotter AL, Levine DM, Roecker AJ, Coleman PJ, Koblan KS, Renger JJ (2010) Orexin receptor antagonism prevents transcriptional and behavioral plasticity resulting from stimulant exposure. Neuropharmacology 58:185–194

    Article  CAS  PubMed  Google Scholar 

  • Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L (2004) Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 24:11439–11448

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Ueta Y, Date Y, Nakazato M, Hara Y, Serino R, Nomura M, Shibuya I, Matsukura S, Yamashita H (1999) Down regulation of the prepro-orexin gene expression in genetically obese mice. Brain Res Mol Brain Res 65:14–22

    Article  CAS  PubMed  Google Scholar 

  • Yehuda R, LeDoux J (2007) Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron 56:19–32

    Article  CAS  PubMed  Google Scholar 

  • Zangrossi H Jr, Graeff FG (1997) Behavioral validation of the elevated T-maze, a new animal model of anxiety. Brain Res Bull 44:1–5

    Article  PubMed  Google Scholar 

  • Zhang W, Sunanaga J, Takahashi Y, Mori T, Sakurai T, Kanmura Y, Kuwaki T (2010) Orexin neurons are indispensable for stress-induced thermogenesis in mice. J Physiol 588:4117–4129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu L, Onaka T, Sakurai T, Yada T (2002) Activation of orexin neurones after noxious but not conditioned fear stimuli in rats. NeuroReport 13:1351–1353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Canadian Institutes of Health Research (CIHR; MOP89758 to G. J. K.) and the Natural Sciences and Engineering Council of Canada (NSERC; 261739-2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert J. Kirouac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Wang, H., Lin, Z. et al. Orexins (hypocretins) contribute to fear and avoidance in rats exposed to a single episode of footshocks. Brain Struct Funct 219, 2103–2118 (2014). https://doi.org/10.1007/s00429-013-0626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0626-3

Keywords

Navigation