Skip to main content
Log in

Crosslinking EEG time–frequency decomposition and fMRI in error monitoring

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time–frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time–frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Here, all extracted frequency bands from the sLORETA analysis were tested separately. Note that as described in the “Methods” section that bootstrap tests were conducted. These bootstrapped the whole data matrix, thus Type I errors can be controlled.

References

  • Alexander WH, Brown JW (2011) Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci 14:1338–1344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239

    Article  CAS  PubMed  Google Scholar 

  • Amari SI (1998) Natural Gradient Works Efficiently in Learning. Neural Comput 10:251–276

    Article  Google Scholar 

  • Beste C, Saft C, Yordanova J, Andrich J, Gold R, Falkenstein M, Kolev V (2007) Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington’s disease? Neuropsychologia 45:2922–2930

    Article  PubMed  Google Scholar 

  • Beste C, Saft C, Konrad C, Andrich J, Habbel A, Schepers I, Jansen A, Pfleiderer B, Falkenstein M (2008) Levels of error processing in Huntington’s disease: a combined study using event-related potentials and voxel-based morphometry. Hum Brain Mapp 29:121–130

    Article  PubMed  Google Scholar 

  • Beste C, Willemssen R, Saft C, Falkenstein M (2009) Error processing in normal aging and in basal ganglia disorders. Neuroscience 159:143–149

    Article  CAS  PubMed  Google Scholar 

  • Beste C, Baune BT, Domschke K, Falkenstein M, Konrad C (2010a) Dissociable influences of NR2B-receptor related neural transmission on functions of distinct associative basal ganglia circuits. Neuroimage 52:309–315

    Article  CAS  PubMed  Google Scholar 

  • Beste C, Domschke K, Kolev V, Yordanova J, Baffa A, Falkenstein M, Konrad C (2010b) Functional 5-HT1a receptor polymorphism selectively modulates error- specific subprocesses of performance monitoring. Hum Brain Mapp 31:621–630

    PubMed  Google Scholar 

  • Beste C, Kolev V, Yordanova J, Domschke K, Falkenstein M, Baune BT, Konrad C (2010c) The role of the BDNF Val66Met polymorphism for the synchronization of error-specific neural networks. J Neurosci 30:10727–10733

    Article  CAS  PubMed  Google Scholar 

  • Beste C, Güntürkün O, Baune BT, Domschke K, Falkenstein M, Konrad C (2011) Double dissociated effects of the functional TNF-alpha -308G/A polymorphism on processes of cognitive control. Neuropsychologia 49:196–202

    Article  PubMed  Google Scholar 

  • Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox. International Conference on Functional Mapping of the Human Brain, Sendai

    Google Scholar 

  • Briselli E, Garreffa G, Bianchi L, Bianciardi M, Macaluso E, Abbafati M, Marciani MG, Maraviglia B (2006) An independent component analysis-based approach on ballistocardiogram artifact removing. Magn Reson Imaging 24:393–400

    Article  PubMed  Google Scholar 

  • Brookings T, Ortigue S, Grafton S, Carlson J (2009) Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization. Neuroimage 44:411–420

    Article  PubMed  Google Scholar 

  • Cavanagh JF, Cohen MX, Allen JJ (2009) Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. J Neurosci 29(1):98–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavanagh JF, Zambrano-Vazquez L, Allen JJ (2012) Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology 49(2):220–238

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen MX (2011) Error-related medial frontal theta activity predicts cingulate-related structural connectivity. NeuroImage 55(3):1373–1383

    Article  PubMed  Google Scholar 

  • Comon P (1994) Independent component analysis—a new concept? Signal Process 36:287–314

    Article  Google Scholar 

  • Dammers J, Schiek M, Boers F, Silex C, Zvyagintsev M, Pietrzyk U, Mathiak K (2008) Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings. IEEE Trans Biomed Eng 55(10):2353–2362

    Article  PubMed  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737

    Article  CAS  PubMed  Google Scholar 

  • Dehaene S, Posner M, Tucker DM (1994) Localization of an neural system for error detection and compensation. Psychol Sci 5:303–305

    Article  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Method 134:9–21

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman and Hall, New York

    Book  Google Scholar 

  • Falkenstein M, Hohnsbein J, Hoomann J, Blanke L (1990) Psychophysiological Brain Research. In: Brunia CHM, Gaillard AWK, Kok A (eds) Tilburg University Press, Tilburg, pp 192–195

  • Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error-detection and compensation. Psychol Sci 4:385–390

    Article  Google Scholar 

  • Heil M (2002) The functional significance of ERP effects during mental rotation. Psychophysiology 39:535–545

    Article  PubMed  Google Scholar 

  • Heil M, Wahl K, Herbst M (1999) Mental rotation, memory scanning, and the central bottleneck. Psychol Res 62:48–61

    Article  CAS  PubMed  Google Scholar 

  • Hester R, Foxe JJ, Molholm S, Shpaner M, Garavan H (2005) Neural mechanisms involved in error processing: a comparison of errors made with and without awareness. Neuroimage 27:602–608

    Article  PubMed  Google Scholar 

  • Hoffmann S, Falkenstein M (2008) The Correction of Eye Blink Artefacts in the EEG: a Comparison of Two Prominent Methods. PLoS One 3:e3004

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoffmann S, Falkenstein M (2010) Independent component analysis of erroneous and correct responses suggests online response control. Hum Brain Mapp 31:1305–1315

    Article  PubMed  Google Scholar 

  • Hoffmann S, Falkenstein M (2011) Aging and error processing: age related increase in the variability of the error-negativity is not accompanied by increase in response variability. PLoS One 6:e17482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann S, Wascher E (2012) Spatial cueing modulates the monitoring of correct responses. Neurosci Lett 506:225–228

    Article  CAS  PubMed  Google Scholar 

  • Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709

    Article  PubMed  Google Scholar 

  • Holroyd CB, Yeung N (2003) Alcohol and error processing. Trends Neurosci 26:402–404

    Article  CAS  PubMed  Google Scholar 

  • Huiskamp GJM (2005) Reduction of the Ballistocardiogram Artifact in Simultaneous EEG-fMRI using ICA. Conf Proc IEEE Eng Med Biol Soc 4:3691–3694

    CAS  PubMed  Google Scholar 

  • Jung TP, Humphries C, Lee TW, Makeig S, McKeown MJ, Iragui V, Sejnowski T (1998) Extended ICA removes artifacts from electroencephalographic recordings. Advances in Neural Information Processing Systems. MIT Press, Cambridge

    Google Scholar 

  • Jung TP, Makeig S, McKeown MJ, Bell AJ, Lee TW, Sejnowski TJ (2001) Imaging brain dynamics using independent component analysis. Proc IEEE 89:1107–1122

    Article  Google Scholar 

  • Keil J, Weisz N, Paul-Jordanov I, Wienbruch C (2010) Localization of the magnetic equivalent of the ERN and induced oscillatory brain activity. Neuroimage 51(404):411

    Google Scholar 

  • Klein TA, Endrass T, Kathmann N, Neumann J, von Cramon DY, Ullsperger M (2007) Neural correlates of error awareness. Neuroimage 34:1774–1781

    Article  PubMed  Google Scholar 

  • Lee TW, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11:417–441

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Oh S, Jolesz FA, Park H, Yoo SS (2009) Application of independent component analysis for the data mining of simultaneous Eeg-fMRI: preliminary experience on sleep onset. Int J Neurosci 119:1118–1136

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Y, Ma Z, Lu W, Li Y (2006) Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach. Physiol Meas 27(4):425–436

    Article  PubMed  Google Scholar 

  • Liotti M, Pliszka SR, Perez R, Kothmann D, Woldorff MG (2005) Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex 41:377–388

    Article  PubMed  Google Scholar 

  • Luu P, Tucker DM (2001) Regulating action: alternating activation of midline frontal and motor cortical networks. Clin Neurophysiol 112(7):1295–1306

    Article  CAS  PubMed  Google Scholar 

  • Luu P, Tucker DM, Makeig S (2004) Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin Neurophysiol 115(8):1821–1835

    Article  PubMed  Google Scholar 

  • Maier ME, Yeung N, Steinhauser M (2011) Error-related brain activity and adjustments of selective attention following errors. Neuroimage 56(4):2339–2347

    Article  PubMed  Google Scholar 

  • Mallet S (1999) A theory for multi-resolution signal decomposition: the wavelet representation. IEEE 7:674–693

    Google Scholar 

  • Marques JP, Rebola J, Figueiredo P, Pinto A, Sales F, Castelo-Branco M (2009) ICA decomposition of EEG signal for fMRI processing in epilepsy. Hum Brain Mapp 30:2986–2996

    Article  PubMed  Google Scholar 

  • Mathalon DH, Fedor M, Faustman WO, Gray M, Askari N, Ford JM (2002) Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. J Abnorm Psychol 111:22–41

    Article  PubMed  Google Scholar 

  • Michels L, Lüchinger R, Koenig T, Martin E, Brandeis D (2012) Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory. PLoS One 7(7):e39447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moosmann M, Schonfelder VH, Specht K, Scheeringa R, Nordby H, Hugdahl K (2009) Realignment parameter-informed artefact correction for simultaneous EEG- fMRI recordings. Neuroimage 45:1144–1150

    Article  PubMed  Google Scholar 

  • Nieuwenhuis S, Ridderinkhof KR, Talsma D, Coles MG, Holroyd CB, Kok A, van der Molen MW (2002) A computational account of altered error processing in older age: dopamine and the error-related negativity. Cogn Affect Behav Neurosci 2:19–36

    Article  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency. I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515

    Article  CAS  PubMed  Google Scholar 

  • Pailing PE, Segalowitz SJ (2004) The effects of uncertainty in error monitoring on associated ERPs. Brain Cogn 56:215–233

    Article  PubMed  Google Scholar 

  • Pailing PE, Segalowitz SJ, Dywan J, Davies PL (2002) Error negativity and response control. Psychophysiology 39:198–206

    Article  PubMed  Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187

    Article  CAS  PubMed  Google Scholar 

  • Prime D, Jolicoeur P (2009) Mental rotation requires visual short-term memory: evidence from human electric cortical activity. J Cogn Neurosci 22:2437–2446

    Article  Google Scholar 

  • Prime D, Dell’Acqua R, Arguin M, Gosselin F, Jolicoeur P (2011) Spatial layout of letters in nonwords affects visual short-term memory load: evidence from human electrophysiology. Psychophysiology 48:430–436

    Article  PubMed  Google Scholar 

  • R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, url: http://www.R-project.org

  • Rasheed T, Lee YK, Lee SY, Kim TS (2009) Attenuation of artifacts in EEG signals measured inside an MRI scanner using constrained independent component analysis. Physiol Meas 30:387–404

    Article  PubMed  Google Scholar 

  • Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. Psychol Sci 9:347

    Article  Google Scholar 

  • Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447

    Article  CAS  PubMed  Google Scholar 

  • Roger C, Benar CG, Vidal F, Hasbroucq T, Burle B (2010) Rostral Cingulate Zone and correct response monitoring: ICA and source localization evidences for the unicity of correct- and error-negativities. Neuroimage 51:391–403

    Article  PubMed  Google Scholar 

  • Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34:1015–1022

    Article  PubMed  Google Scholar 

  • Scheeringa R, Fries P, Petersson K-M, Oostenveld R, Grothe I, Norris DG, Hagoort P, Bastiaansen MCM (2011) Neuronal dynamics underlying high- and low- frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–583

    Article  CAS  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Trujillo LT, Allen JJB (2007) Theta EEG dynamics of the error-related negativity. Clin Neurophysiol 118(3):645–668

    Article  PubMed  Google Scholar 

  • Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23:4308–4314

    CAS  PubMed  Google Scholar 

  • Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR (2010) Conscious perception of errors and its relation to the anterior insula. Brain Struct Funct 214:629–643

    Article  PubMed Central  PubMed  Google Scholar 

  • Vidal F, Burle B, Bonnet M, Grapperon J, Hasbroucq T (2003) Error negativity on correct trials: a reexamination of available data. Biol Psychol 64:265–282

    Article  CAS  PubMed  Google Scholar 

  • Wascher E, Reinhard M, Wauschkuhn B, Verleger R (1999) Spatial S-R compatibility with centrally presented stimuli. An event-related asymmetry study on dimensional overlap. J Cogn Neurosci 11(2):214–229

    Article  CAS  PubMed  Google Scholar 

  • Willemssen R, Müller T, Schwarz M, Falkenstein M, Beste C (2009) Response monitoring in de novo patients with Parkinson’s disease. PloS One 4:e4898

    Article  PubMed Central  PubMed  Google Scholar 

  • Yordanova J, Falkenstein M, Hohnsbein J, Kolev V (2004) Parallel systems of error processing in the brain. Neuroimage 22:590–602

    Article  PubMed  Google Scholar 

  • Zimmer HD (2008) Visual and spatial working memory: from boxes to networks. Neurosci Biobehav Rev 32:1373–1395

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the Deutsche Forschungsgemeinschaft (DFG); BE 4045/6-2 and BE 4045/10-1 to C·B. and WA 987/14-1 to E.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hoffmann.

Additional information

S. Hoffmann and C. Beste contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, S., Labrenz, F., Themann, M. et al. Crosslinking EEG time–frequency decomposition and fMRI in error monitoring. Brain Struct Funct 219, 595–605 (2014). https://doi.org/10.1007/s00429-013-0521-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0521-y

Keywords

Navigation