Skip to main content

Advertisement

Log in

A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Pigeons are classic animal models for learning, memory, and cognition. The majority of the current understanding about avian neurobiology outside of the domain of the song system has been established using pigeons. Since MRI represents an increasingly relevant tool for comparative neuroscience, a 3-dimensional MRI-based atlas of the pigeon brain becomes essential. Using multiple imaging protocols, we delineated diverse ascending sensory and descending motor systems as well as the hippocampal formation. This pigeon brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. In addition, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. This pigeon brain atlas is freely available for the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams A, Santi A (2011) Pigeons exhibit higher accuracy for chosen memory tests than for forced memory tests in duration matching-to-sample. Learn Behav 39:1–11

    PubMed  Google Scholar 

  • Arends JJ, Zeigler HP (1986) Anatomical identification of an auditory pathway from a nucleus of the lateral lemniscal system to the frontal telencephalon (nucleus basalis) of the pigeon. Brain Res 398:375–381

    Article  PubMed  CAS  Google Scholar 

  • Atoji Y, Wild JM (2004) Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. J Comp Neurol 475:426–461

    Article  PubMed  CAS  Google Scholar 

  • Atoji Y, Wild JM, Yamamoto Y, Suzuki Y (2002) Intratelencephalic connections of the hippocampus in pigeons. J Comp Neurol 447:177–199

    Article  PubMed  Google Scholar 

  • Atoji Y, Saito S, Wild JM (2006) Fiber connections of the compact division of the posterior pallial amygdala and lateral part of the bed nucleus of the stria terminalis in the pigeon (Columba livia). J Comp Neurol 499:161–182

    Article  PubMed  Google Scholar 

  • Bingman VP, Casini G, Nocjar C, Jones TJ (1994) Connections of the piriform cortex in homing pigeons (Columba livia) studied with fast blue and WGA-HRP. Brain Behav Evol 43:206–218

    Article  PubMed  CAS  Google Scholar 

  • Bonke BA, Bonke D, Scheich H (1979) Connectivity of the auditory forebrain nuclei in the guinea fowl (Numida meleagris). Cell Tissue Res 200:101–121

    Article  PubMed  CAS  Google Scholar 

  • Brecha N, Karten HJ, Hunt SP (1980) Projections of the nucleus of basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study. J Comp Neurol 189:615–670

    Article  PubMed  CAS  Google Scholar 

  • Browning R, Overmier JB, Colombo M (2011) Delay activity in avian prefrontal cortex—sample code or reward code? Eur J Neurosci 33:726–735

    Article  PubMed  Google Scholar 

  • Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2007) The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 24:1843–1852

    Article  PubMed  CAS  Google Scholar 

  • Casini G, Bingman VP, Bagnoli P (1986) Connections of pigeon dorsomedial forebrain studied with HRP and 3H-proline. J Comp Neurol 245:454–470

    Article  PubMed  CAS  Google Scholar 

  • Catsicas S, Catsicas M, Clarke PGH (1987) Long-distance intraretinal connections in birds. Nature 326:186–187

    Article  PubMed  CAS  Google Scholar 

  • Cheng M-F, Chaiken M, Zuo M, Miller H (1999) Nucleus taeniae of the amygdala of birds: anatomical and suctional studies in ring doves (Streptopelia risoria) and European starlings (Sturnus vulgaris). Brain Behav Evol 53:243–270

    Article  PubMed  CAS  Google Scholar 

  • Colombo M, Broadbent NJ (2000) Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci Biobehav Rev 24:465–484

    Article  PubMed  CAS  Google Scholar 

  • De Groof G, Verhoye M, Van Meir V, Tindemans I, Leemans A, Van der Linden A (2006) In vivo diffusion tensor imaging (DTI) of brain subdivisions and vocal pathways in songbirds. Neuroimage 29:754–763

    Article  PubMed  Google Scholar 

  • Deng C, Wang B (1992) Overlap of somatic and visual response areas in the Wulst of pigeon. Brain Res 582:320–322

    Article  PubMed  CAS  Google Scholar 

  • Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Yang A, Kopell N, Buckner RL, Graybiel AM, Moore CI, Boyden ES (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405

    Article  PubMed  CAS  Google Scholar 

  • Diekamp B, Hellmann B, Troje NF, Wang SR, Güntürkün O (2001) Electrophysiological and anatomical evidence for a direct projection from the nucleus of the basal optic root to the nucleus rotundus in pigeons. Neurosci Lett 305:103–106

    Article  PubMed  CAS  Google Scholar 

  • Dubbeldam JL, Den Boer-Visser AM, Bout RG (1997) Organization and efferent connections of the archistriatum of the Mallard, Anas platyrhynchos L.: an anterograde and retrograde tracing study. J Comp Neurol 388:632–657

    Article  PubMed  CAS  Google Scholar 

  • Ferster CB, Skinner BF (1957) Schedules of reinforcement. Appleton-Century-Crofts, New York

    Book  Google Scholar 

  • Fredes F, Tapia S, Letelier JC, Marín G, Mpodozis J (2010) Topographic arrangement of the rotundo-entopallial projection in the pigeon (Columba livia). J Comp Neurol 518(21):4342–4361

    Article  PubMed  Google Scholar 

  • Friedrich AM, Clement TS, Zentall TR (2004) Functional equivalence in pigeons involving a four-member class. Behav Process 67(3):395–403

    Article  Google Scholar 

  • Gagliardo A, Ioale P, Bingman VP (1999) Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. J Neurosci 19(1):311–315

    PubMed  CAS  Google Scholar 

  • Gruberg E, Dudkin E, Wang Y, Marín G, Salas C, Sentis E, Letelier J, Mpodozis J, Malpeli J, Cui H, Ma R, Northmore D, Udin S (2006) Influencing and interpreting visual input: the role of a visual feedback system. J Neurosci 26(41):10368–10371

    Article  PubMed  CAS  Google Scholar 

  • Güntürkün O (1987) A Golgi study of the isthmic nuclei in the pigeon (Columba livia). Cell Tissue Res 248:439–448

    Article  PubMed  Google Scholar 

  • Güntürkün O (2000) Sensory physiology: vision. In: Whittow GC (ed) Sturkie’s avian physiology. Academic Press, Orlando, pp 1–19

    Chapter  Google Scholar 

  • Güntürkün O, Karten HJ (1991) An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia). J Comp Neurol 314:721–749

    Article  PubMed  Google Scholar 

  • Güntürkün O, Kröner S (1999) A polysensory pathway to the forebrain of the pigeon: the ascending projections of the n. dorsolateralis possterior thalami (DLP). Eur J Morphol 37:124–128

    Article  Google Scholar 

  • Güntürkün O, Remy M (1990) The topographical projection of the n. isthmi pars parvocellularis (Ipc) onto the tectum opticum in the pigeon. Neurosci Lett 111:18–22

    Article  PubMed  Google Scholar 

  • Güntürkün O, Melsbach G, Hörster W, Daniel S (1993) Different sets of afferents are demonstrated by the two fluorescent tracers fast blue and rhodamine. J Neurosci Methods 49:103–111

    Article  PubMed  Google Scholar 

  • Güntürkün O, Hellmann B, Melsbach G, Prior H (1998) Asymmetries of representation in the visual system of pigeons. NeuroReport 9:4127–4130

    Article  PubMed  Google Scholar 

  • Hellmann B, Güntürkün O (2001) The structural organization of parallel information processing within the tectofugal visual system of the pigeon. J Comp Neurol 429:94–112

    Article  PubMed  CAS  Google Scholar 

  • Herold C, Palomero-Gallagher N, Hellmann B, Kröner S, Theiss C, Güntürkün O, Zilles K (2011) The receptorarchitecture of the pigeons’ nidopallium caudolaterale—an avian analogue to the prefrontal cortex. Brain Struct Funct 216:239–254

    Article  PubMed  CAS  Google Scholar 

  • Heyers D, Manns M, Luksch H, Güntürkün O, Mouritsen H (2007) A visual pathway links brain structures active during magnetic compass orientation. PLoS ONE 2(9):e937

    Article  PubMed  Google Scholar 

  • Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten HJ, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild M, Ball GF, Dugas-Ford J, Durand S, Hough G, Husband S, Kubikova L, Lee D, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159

    Article  PubMed  CAS  Google Scholar 

  • Joly O, Ramus F, Pressnitzer D, Vanduffel W, Orban GA (2011) Interhemispheric differences in auditory processing revealed by fMRI in awake rhesus monkeys. Cereb Cortex [Epub ahead of print]

  • Kahn MC, Bingman VP (2009) Avian hippocampal role in space and content memory. Eur J Neurosci 30:1900–1908

    Article  PubMed  Google Scholar 

  • Kahn MC, Hough GE II, Eyck GRT, Bingman VP (2003) Internal connectivity of the homing pigeon (Columba livia) hippocampal formation: an anterograde and retrograde tracer study. J Comp Neurol 459:127–141

    Article  PubMed  Google Scholar 

  • Kangas BD, Vaidya M, Branch MN (2010) Titrating-delay matching-to-sample in the pigeon. J Exp Anal Behav 94:69–81

    Article  PubMed  Google Scholar 

  • Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon. Johns Hopkins Press, Baltimore

    Google Scholar 

  • Karten HJ, Hodos W, Nauta WJ, Revzin AM (1973) Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150:253–278

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (2011) Control from below: the role of a midbrain network in spatial attention. Eur J Neurosci 33:1961–1972

    Article  PubMed  Google Scholar 

  • Korzeniewska E, Güntürkün O (1990) Sensory properties and afferents of the n. dorsolateralis posterior thalami (DLP) of the pigeon. J Comp Neurol 292:457–479

    Article  PubMed  CAS  Google Scholar 

  • Krützfeldt NO, Wild JM (2005) Definition and novel connections of the entopallium in the pigeon (Columba livia). J Comp Neurol 490:40–56

    Article  PubMed  Google Scholar 

  • Logerot P, Krützfeldt NO, Wild JM, Kubke MF (2011) Subdivisions of the auditory midbrain (n. mesencephalicus lateralis, pars dorsalis) in zebra finches using calcium-binding protein immunocytochemistry. PLoS ONE 6:e20686

    Article  PubMed  CAS  Google Scholar 

  • Marín G, Letelier JC, Henny P, Sentis E, Farfán G, Fredes F, Pohl N, Karten H, Mpodozis J (2003) Spatial organization of the pigeon tectorotundal pathway: an interdigitating topographic arrangement. J Comp Neurol 45:361–380

    Article  Google Scholar 

  • Miceli D, Repérant J, Villalobos J, Dionne L (1987) Extratelencephalic projections of the avian visual Wulst. A quantitative autoradiographic study in the pigeon Columba livia. J Hirnforsch 28:45–57

    PubMed  CAS  Google Scholar 

  • Miceli D, Marchand L, Repérant J, Rio J-P (1990) Projections of the dorsolateral anterior complex and adjacent thalamic nuclei upon the visual Wulst in the pigeon. Brain Res 518:317–323

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2000) The avian ear and hearing. In: Whittow GC (ed) Sturkie’s avian physiology. Academic Press, Orlando, pp 21–38

    Chapter  Google Scholar 

  • Patzke N, Manns M, Güntürkün O (2011) Telencephalic organisation of the olfactory system in homing pigeons (Columba livia). Neuroscience 194:53–61

    Article  PubMed  CAS  Google Scholar 

  • Poirier C, Vellema M, Verhoye M, Van Meir V, Wild JM, Balthazart J, Van Der Linden A (2008) A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage 41:1–6

    Article  PubMed  Google Scholar 

  • Poirier C, Boumans T, Verhoye M, Balthazart J, Van der Linden A (2009) Own-song recognition in the songbird auditory pathway: selectivity and lateralization. J Neurosci 29:2252–2258

    Article  PubMed  CAS  Google Scholar 

  • Prior H, Wiltschko R, Stapput K, Güntürkün O, Wiltschko W (2004) Visual lateralization and homing in pigeons. Behav Brain Res 154:301–310

    Article  PubMed  Google Scholar 

  • Redies C, Medina L, Puelles L (2001) Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J Comp Neurol 438:253–285

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Karten HJ (1985) Comparison of olfactory bulb projections in pigeons and turtles. Brain Behav Evol 27:11–27

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Medina L, Veenman CL (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Brain Res Rev 28:235–285

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Bruce L, Butler A, Csillag A, Kuenzel W, Medina L, Paxinos G, Perkel D, Powers A, Shimizu T, Striedter G, Wild M, Ball G, Durand S, Güntürkün O, Lee D, Mello C, White S, Hough G, Kubikova L, Smulders T, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414

    Article  PubMed  Google Scholar 

  • Remy M, Güntürkün O (1991) Retinal afferents of the tectum opticum and the nucleus opticus principalis thalami in the pigeon. J Comp Neurol 305:57–70

    Article  PubMed  CAS  Google Scholar 

  • Rose J, Schiffer A-M, Dittrich L, Güntürkün O (2010) The role of dopamine in maintenance and distractability of attention in the ‘prefrontal cortex’ of pigeons. Neuroscience 167:232–237

    Article  PubMed  CAS  Google Scholar 

  • Scarf D, Colombo M (2010) Representation of serial order in pigeons (Columba livia). J Exp Psychol Anim Behav Process 36:423–429

    Article  PubMed  Google Scholar 

  • Schall U, Güntürkün O, Delius JD (1986) Sensory projections to the nucleus basalis prosencephali of the pigeon. Cell Tissue Res 245:539–546

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Karten HJ (1990) Immunohistochemical analysis of the visual Wulst of the pigeon (Columba livia). J Comp Neurol 300:346–369

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Karten HJ (1993) The avian visual system and the evolution of the neocortex. In: Zeigler HP, Bischof H-J (eds) Vision, brain and behavior in birds. MIT Press, Cambridge

  • Székely AD (1999) The avian hippocampal formation: subdivisions and connectivity. Behav Brain Res 98:219–225

    Article  PubMed  Google Scholar 

  • Uchiyama H (1989) Centrifugal pathways to the retina: influence of the optic tectum. Visual Neurosci 3:183–206

    Article  CAS  Google Scholar 

  • Van Meir V, Boumans T, De Groof G, Van Audekerke J, Smolders A, Scheunders P, Sijbers J, Verhoye M, Balthazart J, Van der Linden A (2005) Spatiotemporal properties of the BOLD response in the songbirds’ auditory circuit during a variety of listening tasks. Neuroimage 25:1242–1255

    Article  PubMed  Google Scholar 

  • Vargas JP, Petruso EJ, Bingman VP (2004) Hippocampal formation is required for geometric navigation in pigeons. Eur J Neurosci 20:1937–1944

    Article  PubMed  Google Scholar 

  • Veenman CL, Wild JM, Reiner A (1995) Organization of the avian ‘corticostriatal’ projection system: a retrograde and anterograde pathway tracing study in pigeons. J Comp Neurol 354:87–126

    Article  PubMed  CAS  Google Scholar 

  • Vellema M, Verschuerena J, Van Meira V, Van der Linden A (2011) A customizable 3-dimensional digital atlas of the canary brain in multiple modalities. Neuroimage 57:352–361

    Article  PubMed  Google Scholar 

  • Wang Y, Major DE, Karten HJ (2004) Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus gallus). J Comp Neurol 469:275–297

    Article  PubMed  Google Scholar 

  • Wang Y, Luksch H, Brecha NC, Karten HJ (2006) Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels. J Comp Neurol 494:7–35

    Article  PubMed  Google Scholar 

  • Watanabe M, Ito H, Masai H (1983) Cytoarchitecture and visual receptive neurons in the Wulst of the Japanese quail (Coturnix coturnix japonica). J Comp Neurol 213:188–198

    Article  PubMed  CAS  Google Scholar 

  • Wild JM (1985) The avian somatosensory system. I. Primary spinal afferent input to the spinal cord and brainstem in the pigeon (Columba livia). J Comp Neurol 240:377–395

    Article  PubMed  CAS  Google Scholar 

  • Wild JM (1987) The avian somatosensory system: connections of regions of body representation in the forebrain of the body. Brain Res 412:205–223

    Article  PubMed  CAS  Google Scholar 

  • Wild JM (1992) Direct and indirect “cortico”-rubral and rubro-cerebellar cortical projections in the pigeon. J Comp Neurol 326:623–636

    Article  PubMed  CAS  Google Scholar 

  • Wild JM (1995) Convergence of somatosensory and auditory projections in the avian torus semicircularis, including the central auditory nucleus. J Comp Neurol 358:465–486

    Article  PubMed  CAS  Google Scholar 

  • Wild JM, Zeigler HP (1996) Central projections and somatotopic organisation of trigeminal primary afferents in pigeon (Columba livia). J Comp Neurol 368:136–152

    Article  PubMed  CAS  Google Scholar 

  • Wild JM, Karten HJ, Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 337:32–62

    Article  PubMed  CAS  Google Scholar 

  • Wilzeck C, Wiltschko W, Güntürkün O, Wiltschko R, Prior H (2010) Lateralization of magnetic compass orientation in pigeons. J R Soc Interface 7:235–240

    Article  Google Scholar 

  • Wylie DRW, Linkenhoker B, Lau KL (1997) Projections of the nucleus of the basal optic root in pigeons (Columba livia) revealed with biotinylated dextrane amine. J Comp Neurol 384:517–536

    Article  PubMed  CAS  Google Scholar 

  • Xiao Q, Güntürkün O (2008) Do pigeons perceive the motion aftereffect? A behavioral study. Behav Brain Res 187:327–333

    Article  PubMed  Google Scholar 

  • Yamazaki Y, Aust U, Huber L, Güntürkün O (2007) Lateralized cognition: asymmetrical and complementary strategies of pigeons during discrimination of the “human” concept. Cognition 104:315–344

    Article  PubMed  CAS  Google Scholar 

  • Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Zeier H, Karten HJ (1971) The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res 31:313–326

    Article  PubMed  CAS  Google Scholar 

  • Zentall TR, Weaver JE, Clement TS (2004) Pigeons group time intervals according to their relative duration. Psychon Bull Rev 11(1):113–117

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Deutsche Forschungsgemeinschaft through its SFB 874 (O.G.). We are grateful to Steven Staelens, Steven Deleye and Philippe Joye from MICA (Universiteit Antwerpen) for support during CT scans and Ariane Schwarz as well as Felix Ströckens for help with histology and microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Güntürkün.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güntürkün, O., Verhoye, M., De Groof, G. et al. A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain. Brain Struct Funct 218, 269–281 (2013). https://doi.org/10.1007/s00429-012-0400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0400-y

Keywords

Navigation