Skip to main content
Log in

Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The nucleus reuniens (RE) of the midline thalamus has been shown to strongly innervate structures of the limbic forebrain, prominently including the hippocampus (HF) and the medial prefrontal cortex (mPFC) and to exert pronounced excitatory effects on HF and mPFC. It was unknown, however, whether RE projections to, and hence actions on, the HF and mPFC originate from a common or largely separate groups of RE neurons. Using fluorescent retrograde tracing techniques, we examined the patterns of distribution of RE cells projecting to HF, to the mPFC or to both sites via axon collaterals. Specifically, injections of the retrograde tracers Fluorogold (FG) or Fluororuby (FR) were made in the mPFC and in various subfields of HF and patterns of single (FG or FR) or double labeled (FG + FR) cells in RE were determined. Pronounced numbers of (single) labeled neurons were present throughout RE with FG or FR injections, and although intermingled in RE, cells projecting to the mPFC were preferentially distributed along the midline or in the perireuniens nucleus (pRE), whereas those projecting to HF occupied a wide mediolateral cross sectional area of RE lying between cells projecting to the mPFC. Approximately, tenfold more labeled cells were present in RE with ventral compared to dorsal CA1 injections. Like single labeled neurons, double labeled cells were found throughout RE, but were most densely concentrated in areas of greatest overlap of FG+ and FR+ neurons or mainly in the lateral one-third of RE, medial to pRE. Depending on specific combinations of injections, double labeled cells ranged from approximately 3–9% of the labeled neurons. The nucleus reuniens has been shown to be a vital link in limbic subcortical–cortical communication and recent evidence indicates a direct RE involvement in hippocampal and medial prefrontal cortical-dependent behaviors. The present findings indicate that RE is critically positioned to influence the HF and mPFC, and their associated behaviors, via separate or collateral projections to these sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

CA1,d,v:

Field CA1 of Ammon’s horn, dorsal, ventral division

CA3:

Field CA3 of Ammon’s horn

DB:

Double labeled cell

DBS:

Deep brain stimulation

EC, l, m:

Entorhinal cortex, lateral, medial division

FG:

Fluorogold

FR:

Fluororuby

HF:

Hippocampal formation

IL:

Infralimbic cortex

MCS:

Minimally conscious state

mPFC:

Medial prefrontal cortex

mt:

Mammillothalamic tract

PFC:

Prefrontal cortex

PL:

Prelimbic cortex

pRE:

Perireuniens nucleus of thalamus

PT:

Paratenial nucleus of thalamus

PV:

Paraventricular nucleus of thalamus

PVHy:

Paraventricular nucleus of hypothalamus

RAM:

Radial arm maze

RE:

Nucleus reuniens of thalamus

RH:

Rhomboid nucleus of thalamus

slm:

Stratum lacunosum moleculare

SMT:

Submedial nucleus of thalamus

SUB,v:

Subiculum, ventral division

VS:

Vegetative state

3V:

Third ventricle

References

  • Bertram EH, Zhang DX (1999) Thalamic excitation of hippocampal CA1 neurons: a comparison with the effects of CA3 stimulation. Neuroscience 92:15–26

    Article  PubMed  CAS  Google Scholar 

  • Bokor H, Csáki A, Kocsis K, Kiss J (2002) Cellular architecture of the nucleus reuniens thalami and its putative aspartatergic/glutamatergic projection to the hippocampus and medial septum in the rat. Eur J Neurosci 16:1227–1239

    Article  PubMed  Google Scholar 

  • Canteras NS, Goto M (1999) Connections of the precommissural nucleus. J Comp Neurol 408:23–45

    Article  PubMed  CAS  Google Scholar 

  • Castaigne P, Lhermitte F, Buge A, Escourolle R, Hauw JJ, Lyon-Caen O (1981) Paramedian thalamic and midbrain infarct: clinical and neuropathological study. Ann Neurol 10:127–148

    Article  PubMed  CAS  Google Scholar 

  • Cavdar S, Onat FY, Cakmak YO, Yananli HR, Gülçebi M, Aker R (2008) The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat. J Anat 212:249–256

    Article  PubMed  Google Scholar 

  • Davoodi FG, Motamedi F, Naghdi N, Akbari E (2009) Effect of reversible inactivation of the reuniens nucleus on spatial learning and memory in rats using Morris water maze task. Behav Brain Res 198:130–135

    Article  PubMed  Google Scholar 

  • Davoodi FG, Motamedi F, Akbari E, Ghanbarian E, Jila B (2011) Effect of reversible inactivation of reuniens nucleus on memory processing in passive avoidance task. Behav Brain Res 221:1–6

    Article  PubMed  Google Scholar 

  • Deliac P, Richer E, Berthomieu J, Paty J, Cohadon F, Bensch C (1993) Electrophysiological development under thalamic stimulation of post-traumatic persistent vegetative states. Apropos of 25 cases. Neurochirurgie 39:293–303

    PubMed  CAS  Google Scholar 

  • Dolleman-Van der Weel MJ, Lopes da Silva FH, Witter MP (1997) Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. J Neurosci 17:5640–5650

    PubMed  CAS  Google Scholar 

  • Dolleman-van der Weel MJ, Morris RG, Witter MP (2009) Neurotoxic lesions of the thalamic reuniens or mediodorsal nucleus in rats affect non-mnemonic aspects of watermaze learning. Brain Struct Funct 213:329–342

    Article  PubMed  Google Scholar 

  • Dollerman-Van der Weel MJ, Witter MP (1996) Projections from nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 364:637–650

    Article  Google Scholar 

  • Hembrook JR, Mair RG (2011) Lesions of reuniens and rhomboid nuclei impair radial arm maze win-shift performance. Hippocampus 21:815–826

    PubMed  Google Scholar 

  • Herkenham M (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177:589–610

    Article  PubMed  CAS  Google Scholar 

  • Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448:53–101

    Article  PubMed  Google Scholar 

  • Lanciego JL, Wouterlood FG (2006) Multiple neuronal tract tracing: approaches for multiple tract tracing. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules neurons and systems. Springer, New York, pp 336–365

    Chapter  Google Scholar 

  • McKenna JT, Vertes RP (2004) Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480:115–142

    Article  PubMed  Google Scholar 

  • Ohtake T, Yamada H (1989) Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA-L study. Neurosci Res 6:556–568

    Article  PubMed  CAS  Google Scholar 

  • Olucha-Bordonau FE, Teruel V, Barcia-González J, Ruiz-Torner A, Valverde-Navarro AA, Martínez-Soriano F (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464:62–97

    Article  PubMed  Google Scholar 

  • Plum F (1991) Vulnerability of the brain and heart after cardiac arrest. N Engl J Med 324:1278–1280

    Article  PubMed  CAS  Google Scholar 

  • Risold PY, Thompson RH, Swanson LW (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Rev 24:197–254

    Article  PubMed  CAS  Google Scholar 

  • Schiff ND, Plum F (2000) The role of arousal and “gating” systems in the neurology of impaired consciousness. J Clin Neurophysiol 17:438–452

    Article  PubMed  CAS  Google Scholar 

  • Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, O’Connor J, Kobylarz EJ, Farris S, Machado A, McCagg C, Plum F, Fins JJ, Rezai AR (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603

    Article  PubMed  CAS  Google Scholar 

  • Schmued LC, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluororuby, within the CNS. Brain Res 526:127–134

    Article  PubMed  CAS  Google Scholar 

  • Shah SA, Schiff ND (2010) Central thalamic deep brain stimulation for cognitive neuromodulation—a review of proposed mechanisms and investigational studies. Eur J Neurosci 32:1135–1144

    Article  PubMed  Google Scholar 

  • Su HS, Bentivoglio M (1990) Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat. J Comp Neurol 297:582–593

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (2004) Brain maps: structure of the rat brain. Elsevier, New York

    Google Scholar 

  • Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  • Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442:163–187

    Article  PubMed  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796

    Article  PubMed  Google Scholar 

  • Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C (2007) Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 71:601–609

    Article  PubMed  Google Scholar 

  • Viana Di Prisco G, Vertes RP (2006) Excitatory actions of the ventral midline thalamus (rhomboid/reuniens) on the medial prefrontal cortex in the rat. Synapse 60:45–55

    Article  Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood FG (1991) Innervation of entorhinal principal cells by neurons of the nucleus reuniens thalami. Anterograde PHA-L tracing combined with retrograde fluorescent tracing and intracellular injection with Lucifer yellow in the rat. Eur J Neurosci 3:641–647

    Article  PubMed  Google Scholar 

  • Wouterlood FG, Saldana E, Witter MP (1990) Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 296:179–203

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Katayama Y (2005) Deep brain stimulation therapy for the vegetative state. Neuropsychol Rehabil 15:406–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation grant IOS 0820639 to RPV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Vertes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoover, W.B., Vertes, R.P. Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study. Brain Struct Funct 217, 191–209 (2012). https://doi.org/10.1007/s00429-011-0345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0345-6

Keywords

Navigation