Skip to main content

Advertisement

Log in

Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

SMI-32 antibody recognizes a non-phosphorylated epitope of neurofilament proteins, which are thought to be necessary for the maintenance of large neurons with highly myelinated processes. We investigated the distribution and quantity of SMI-32-immunoreactive(-ir) neurons in individual parts of the rat auditory system. SMI-32-ir neurons were present in all auditory structures; however, in most regions they constituted only a minority of all neurons (10–30%). In the cochlear nuclei, a higher occurrence of SMI-32-ir neurons was found in the ventral cochlear nucleus. Within the superior olivary complex, SMI-32-ir cells were particularly abundant in the medial nucleus of the trapezoid body (MNTB), the only auditory region where SMI-32-ir neurons constituted an absolute majority of all neurons. In the inferior colliculus, a region with the highest total number of neurons among the rat auditory subcortical structures, the percentage of SMI-32-ir cells was, in contrast to the MNTB, very low. In the medial geniculate body, SMI-32-ir neurons were prevalent in the ventral division. At the cortical level, SMI-32-ir neurons were found mainly in layers III, V and VI. Within the auditory cortex, it was possible to distinguish the Te1, Te2 and Te3 areas on the basis of the variable numerical density and volumes of SMI-32-ir neurons, especially when the pyramidal cells of layer V were taken into account. SMI-32-ir neurons apparently form a representative subpopulation of neurons in all parts of the rat central auditory system and may belong to both the inhibitory and excitatory systems, depending on the particular brain region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alibardi L (1998) Ultrastructural and immunocytochemical characterization of neurons in the rat ventral cochlear nucleus projecting to the inferior colliculus. Ann Anat 180:415–426

    Article  PubMed  CAS  Google Scholar 

  • Alibardi L (2003) Ultrastructural distribution of glycinergic and GABAergic neurons and axon terminals in the rat dorsal cochlear nucleus, with emphasis on granule cell areas. J Anat 203:31–56

    Article  PubMed  Google Scholar 

  • Altschuler RA, Hoffman DW, Wenthold RJ (1986) Neurotransmitters of the cochlea and cochlear nucleus: immunocytochemical evidence. Am J Otolaryngol 7:100–106

    Article  PubMed  CAS  Google Scholar 

  • Andersen BB, Gundersen HJG (1999) Pronounced loss of cell nuclei and anisotropic deformation of thick sections. J Microsc 196:69–73

    Article  PubMed  CAS  Google Scholar 

  • Andjelic S, Gallopin T, Cauli B, Hill EL, Roux L, Badr S, Hu E, Tamás G, Lambolez B (2009) Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. J Neurophysiol 101:641–654

    Article  PubMed  CAS  Google Scholar 

  • Ashwell KW (2008) Topography and chemoarchitecture of the striatum and pallidum in a monotreme, the short-beaked echidna (Tachyglossus aculeatus). Somatosens Mot Res 25:171–187

    Article  PubMed  CAS  Google Scholar 

  • Awatramani GB, Turecek R, Trussell LO (2004) Inhibitory control at a synaptic relay. J Neurosci 24:2643–2647

    Article  PubMed  CAS  Google Scholar 

  • Bajo VM, Moore DR (2005) Descending projections from the auditory cortex to the inferior colliculus in the gerbil, Meriones unguiculatus. J Comp Neurol 486:101–116

    Article  PubMed  Google Scholar 

  • Bajo VM, Merchán MA, López DE, Rouiller EM (1993) Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. J Comp Neurol 334:241–262

    Article  PubMed  CAS  Google Scholar 

  • Baldauf ZB (2005) SMI-32 parcellates the visual cortical areas of the marmoset. Neurosci Lett 383:109–114

    Article  PubMed  CAS  Google Scholar 

  • Bazwinsky I, Hilbig H, Bidmon HJ, Rübsamen R (2003) Characterization of the human superior olivary complex by calcium binding proteins and neurofilament H (SMI-32). J Comp Neurol 456:292–303

    Article  PubMed  CAS  Google Scholar 

  • Bickford ME, Guido W, Godwin DW (1998) Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: normal expression and alteration with visual deprivation. J Neurosci 18:6549–6557

    PubMed  CAS  Google Scholar 

  • Boire D, Desgent S, Matteau I, Ptito M (2005) Regional analysis of neurofilament protein immunoreactivity in the hamster’s cortex. J Chem Neuroanat 29:193–208

    Article  PubMed  CAS  Google Scholar 

  • Bourne JA, Rosa MG (2003) Laminar expression of neurofilament protein in the superior colliculus of the marmoset monkey (Callithrix jacchus). Brain Res 973:142–145

    Article  PubMed  CAS  Google Scholar 

  • Budinger E, Heil P, Scheich H (2000) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus) III. Anatomical subdivisions and corticocortical connections. Eur J Neurosci 12:2425–2451

    Article  PubMed  CAS  Google Scholar 

  • Burianova J, Ouda L, Profant O, Syka J (2009) Age-related changes in GAD levels in the central auditory system of the rat. Exp Gerontol 44:161–169

    Article  PubMed  CAS  Google Scholar 

  • Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205

    Article  PubMed  CAS  Google Scholar 

  • Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60:457–474

    Article  PubMed  Google Scholar 

  • Chaudhuri A, Zangenehpour S, Matsubara JA, Cynader MS (1996) Differential expression of neurofilament protein in the visual system of the vervet monkey. Brain Res 709:17–26

    Article  PubMed  CAS  Google Scholar 

  • Chernock ML, Larue DT, Winer JA (2004) A periodic network of neurochemical modules in the inferior colliculus. Hear Res 188:12–20

    Article  PubMed  CAS  Google Scholar 

  • Cudkowicz M, Kowall NW (1990) Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol 27:200–204

    Article  PubMed  CAS  Google Scholar 

  • Duffy KR, Slusar JE (2009) Monocular deprivation provokes alteration of the neuronal cytoskeleton in developing cat lateral geniculate nucleus. Vis Neurosci 26:319–328

    Article  PubMed  Google Scholar 

  • Fredrich M, Reisch A, Illing RB (2009) Neuronal subtype identity in the rat auditory brainstem as defined by molecular profile and axonal projection. Exp Brain Res 195:241–260

    Article  PubMed  CAS  Google Scholar 

  • Friauf E (1994) Distribution of calcium-binding protein calbindin-D28k in the auditory system of adult and developing rats. J Comp Neurol 349:193–211

    Article  PubMed  CAS  Google Scholar 

  • Goldstein ME, Sternberger LA, Sternberger NH (1987) Varying degrees of phosphorylation determine microheterogeneity of the heavy neurofilament polypeptide (Nf-H). J Neuroimmunol 14:135–148

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJG, Jensen EBV, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology-reconsidered. J Microsc 193:199–211

    Article  PubMed  CAS  Google Scholar 

  • Hassiotis M, Paxinos G, Ashwell KW (2004) Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus) I. Areal organization. J Comp Neurol 475:493–517

    Article  PubMed  Google Scholar 

  • Hazama M, Kimura A, Donishi T, Sakoda T, Tamai Y (2004) Topography of corticothalamic projections from the auditory cortex of the rat. Neuroscience 124:655–667

    Article  PubMed  CAS  Google Scholar 

  • Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304:103–122

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II. Primary and secondary visual cortex. J Comp Neurol 301:55–64

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci USA 84:3472–3476

    Article  PubMed  CAS  Google Scholar 

  • Idrizbegovic E, Canlon B, Bross LS, Willott JF, Bogdanovic N (2001) The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice: a quantitative study. Hear Res 158:102–115

    Article  PubMed  CAS  Google Scholar 

  • Idrizbegovic E, Bogdanovic N, Willott JF, Canlon B (2004) Age-related increases in calcium-binding protein immunoreactivity in the cochlear nucleus of hearing impaired C57BL/6J mice. Neurobiol Aging 25:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Irvine KA, Blakemore WF (2006) Age increases axon loss associated with primary demyelination in cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 175:69–76

    Article  PubMed  CAS  Google Scholar 

  • Kirkcaldie MT, Dickson TC, King CE, Grasby D, Riederer BM, Vickers JC (2002) Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex. J Chem Neuroanat 24:163–171

    Article  PubMed  CAS  Google Scholar 

  • Kopp-Scheinpflug C, Tolnai S, Malmierca MS, Rübsamen R (2008) The medial nucleus of the trapezoid body: comparative physiology. Neuroscience 154:160–170

    Article  PubMed  CAS  Google Scholar 

  • Kulesza RJ Jr (2007) Cytoarchitecture of the human superior olivary complex: medial and lateral superior olive. Hear Res 225:80–90

    Article  PubMed  Google Scholar 

  • Kulesza RJ Jr, Berrebi AS (2000) Superior paraolivary nucleus of the rat is a GABAergic nucleus. J Assoc Res Otolaryngol 1:255–269

    Article  PubMed  Google Scholar 

  • Kulesza RJ, Viñuela A, Saldaña E, Berrebi AS (2002) Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hear Res 168:12–24

    Article  PubMed  Google Scholar 

  • Kuwabara N, Zook JM (1991) Classification of the principal cells of the medial nucleus of the trapezoid body. J Comp Neurol 314:707–720

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara N, DiCaprio RA, Zook JM (1991) Afferents to the medial nucleus of the trapezoid body and their collateral projections. J Comp Neurol 314:684–706

    Article  PubMed  CAS  Google Scholar 

  • Lasek RJ (1988) Studying the intrinsic determinants of neuronal form and function. In: Lasek RJ, Black MM (eds) Intrinsic determinants of neuronal form and fiction. Alan R. Liss, New York, pp 1–60

    Google Scholar 

  • Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41–63

    PubMed  CAS  Google Scholar 

  • Lee MK, Cleveland DW (1994) Neurofilament function and dysfunction: involvement in axonal growth and neuronal disease. Curr Opin Cell Biol 6:34–40

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, Winer JA (2008a) Connections of cat auditory cortex: I. Thalamocortical system. J Comp Neurol 507:1879–1900

    Article  PubMed  Google Scholar 

  • Lee CC, Winer JA (2008b) Connections of cat auditory cortex: II. Commissural system. J Comp Neurol 507:1901–1919

    Article  PubMed  Google Scholar 

  • Lee CC, Winer JA (2008c) Connections of cat auditory cortex: III. Corticocortical system. J Comp Neurol 507:1920–1943

    Article  PubMed  Google Scholar 

  • Luján R, Shigemoto R, Kulik A, Juiz JM (2004) Localization of the GABAB receptor 1a/b subunit relative to glutamatergic synapses in the dorsal cochlear nucleus of the rat. J Comp Neurol 475:36–46

    Article  PubMed  Google Scholar 

  • Luppino G, Hamed SB, Gamberini M, Matelli M, Galletti C (2005) Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: a cytoarchitectonic study. Eur J Neurosci 21:3056–3076

    Article  PubMed  Google Scholar 

  • Malmierca MS (2003) The structure and physiology of the rat auditory system: an overview. Int Rev Neurobiol 56:147–211

    Article  PubMed  Google Scholar 

  • Mancardi G, Hart B, Roccatagliata L, Brok H, Giunti D, Bontrop R, Massacesi L, Capello E, Uccelli A (2001) Demyelination and axonal damage in a non-human primate model of multiple sclerosis. J Neurol Sci 184:41–49

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM, Gunderesen HJG (1996) ‘If you assume, you can make an ass out of u and me’: a decade of the dissector for stereological counting of particles in 3D space. J Anat 188:1–15

    PubMed  Google Scholar 

  • Mellott JG, Van der Gucht E, Lee CC, Carrasco A, Winer JA, Lomber SG (2010) Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32. Hear Res 267:119–136

    Article  PubMed  CAS  Google Scholar 

  • Merchán M, Aguilar LA, Lopez-Poveda EA, Malmierca MS (2005) The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 136:907–925

    Article  PubMed  Google Scholar 

  • Molnár Z, Cheung AF (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115

    Article  PubMed  Google Scholar 

  • Moore MJ, Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci 3:237–242

    PubMed  CAS  Google Scholar 

  • Moore JK, Moore RY (1971) A comparative study of the superior olivary complex in the primate brain. Folia Primatol (Basel) 16:35–51

    Article  CAS  Google Scholar 

  • Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 443:86–103

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Kuwada S, Yin TC, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J Comp Neurol 303:75–100

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain, 4th edn. Academic Press, New York

    Google Scholar 

  • Paxinos G, Kus L, Ashwell KWS, Watson C (1998a) Chemoarchitectonic atlas of the rat brainstem. Academic Press, New York

    Google Scholar 

  • Paxinos G, Kus L, Ashwell KWS, Watson C (1998b) Chemoarchitectonic atlas of the rat forebrain. Academic Press, New York

    Google Scholar 

  • Polley DB, Read HL, Storace DA, Merzenich MM (2007) Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J Neurophysiol 97:3621–3638

    Article  PubMed  Google Scholar 

  • Prieto JJ, Winer JA (1999) Layer VI in cat primary auditory cortex: Golgi study and sublaminar origins of projection neurons. J Comp Neurol 404:332–358

    Article  PubMed  CAS  Google Scholar 

  • Rietzel HJ, Friauf E (1998) Neuron types in the rat lateral superior olive and developmental changes in the complexity of their dendritic arbors. J Comp Neurol 390:20–40

    Article  PubMed  CAS  Google Scholar 

  • Riquelme R, Saldana E, Osen KK, Ottersen OP, Merchan MA (2001) Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: an in situ hybridization and semiquantitative immunocytochemical study. J Comp Neurol 432:409–424

    Article  PubMed  CAS  Google Scholar 

  • Saldaña E, Aparicio MA, Fuentes-Santamaría V, Berrebi AS (2009) Connections of the superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience 163:372–387

    Article  PubMed  Google Scholar 

  • Sanes DH, Friauf E (2000) Development and influence of inhibition in the lateral superior olivary nucleus. Hear Res 147:46–58

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Forsythe ID (2006) The calyx of Held. Cell Tissue Res 326:311–337

    Article  PubMed  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79:3127–3142

    PubMed  CAS  Google Scholar 

  • Soares JG, Rosado De Castro PH, Fiorani M, Nascimento-Silva S, Gattass R (2008) Distribution of neurofilament proteins in the lateral geniculate nucleus, primary visual cortex, and area MT of adult Cebus monkeys. J Comp Neurol 508:605–614

    Article  PubMed  Google Scholar 

  • Sommer I, Lingenhöhl K, Friauf E (1993) Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology. Exp Brain Res 95:223–239

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130

    Article  PubMed  CAS  Google Scholar 

  • Taschenberger H, von Gersdorff H (2000) Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J Neurosci 20:9162–9173

    PubMed  CAS  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L (1998) Axonal transection in the lesions of multiple sclerosis. New Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  • Tsang YM, Chiong F, Kuznetsov D, Kasarskis E, Geula C (2000) Motor neurons are rich in non-phosphorylated neurofilaments: crossspecies comparison and alterations in ALS. Brain Res 861:45–58

    Article  PubMed  CAS  Google Scholar 

  • Ueyama T, Sato K, Kakimoto S, Houtani T, Sakuma S, Ohishi H, Kase M, Sugimoto T (1999) Comparative distribution of GABAergic and peptide-containing neurons in the lateral lemniscal nuclei of the rat. Brain Res 849:220–225

    Article  PubMed  CAS  Google Scholar 

  • Van De Werd HJ, Uylings HB (2008) The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study. Brain Struct Funct 212:387–401

    Article  Google Scholar 

  • Van der Gucht E, Vandesande F, Arckens L (2001) Neurofilament protein: a selective marker for the architectonic parcellation of the visual cortex in adult cat brain. J Comp Neurol 441:345–368

    Article  PubMed  Google Scholar 

  • Veeranna, Yang DS, Lee JH, Vinod KY, Stavrides P, Amin ND, Pant HC, Nixon RA (2009) Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2009.12.001

  • Vickers JC, Costa M (1992) The neurofilament triplet is present in distinct subpopulations of neurons in the central nervous system of the guinea-pig. Neuroscience 49:73–100

    Article  PubMed  CAS  Google Scholar 

  • Vickers JC, Delacourte A, Morrison JH (1992) Progressive transformation of the cytoskeleton associated with normal aging and Alzheimer’s disease. Brain Res 594:273–278

    Article  PubMed  CAS  Google Scholar 

  • Voelker CC, Garin N, Taylor JS, Gähwiler BH, Hornung JP, Molnár Z (2004) Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb Cortex 14:1276–1286

    Article  PubMed  Google Scholar 

  • Von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of held. Nat Rev Neurosci 3:53–64

    Article  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

  • Winer JA, Larue DT (1996) Evolution of GABAergic circuitry in the mammalian medial geniculate body. Proc Natl Acad Sci USA 93:3083–3087

    Article  PubMed  CAS  Google Scholar 

  • Winer JA, Prieto JJ (2001) Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. J Comp Neurol 434:379–412

    Article  PubMed  CAS  Google Scholar 

  • Winer JA, Kelly JB, Larue DT (1999) Neural architecture of the rat medial geniculate body. Hear Res 130:19–41

    Article  PubMed  CAS  Google Scholar 

  • Wong P, Kaas JH (2008) Architectonic subdivisions of neocortex in the gray squirrel (Sciurus carolinensis). Anat Rec (Hoboken) 291:1301–1333

    Article  Google Scholar 

  • Wong P, Kaas JH (2009) Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri). Anat Rec (Hoboken) 292:994–1027

    Google Scholar 

  • Wu SH, Kelly JB (1991) Physiological properties of neurons in the mouse superior olive: membrane characteristics and postsynaptic responses studied in vitro. J Neurophysiol 65:230–246

    PubMed  CAS  Google Scholar 

  • Wu SH, Kelly JB (1993) Response of neurons in the lateral superior olive and medial nucleus of the trapezoid body to repetitive stimulation: intracellular and extracellular recordings from mouse brain slice. Hear Res 68:189–201

    Article  PubMed  CAS  Google Scholar 

  • Wu SH, Kelly JB (1995) Inhibition in the superior olivary complex: pharmacological evidence from mouse brain slice. J Neurophysiol 73:256–269

    PubMed  CAS  Google Scholar 

  • Zhang DX, Li L, Kelly JB, Wu SH (1998) GABAergic projections from the lateral lemniscus to the inferior colliculus of the rat. Hear Res 117:1–12

    Article  PubMed  CAS  Google Scholar 

  • Zilles K (1985) The cortex of the rat. A stereotaxic atlas. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. J. Janouskova for her technical assistance. This study was supported by the Grant Agency of the Czech Republic (309/07/1336), AV0Z50390512 and LC 554.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Ouda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouda, L., Druga, R. & Syka, J. Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat. Brain Struct Funct 217, 19–36 (2012). https://doi.org/10.1007/s00429-011-0329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0329-6

Keywords

Navigation