Skip to main content

Advertisement

Log in

Structural organization of the prefrontal white matter pathways in the adult and aging brain measured by diffusion tensor imaging

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of frontal callosal fibers to normal aging. The present study extended this examination systematically to other prefrontal white matter regions. Structural magnetic resonance imaging and DTI datasets were acquired from 69 healthy subjects aged 22–84 years. The prefrontal white matter was parcellated into several anatomical sub-regions: medial and lateral orbitofrontal white matter, dorsolateral prefrontal white matter, and medial prefrontal white matter, using reliable DTI-tractography protocols. Tract-specific characteristics were calculated using Matlab. Regression models were used to determine the relationship between age and structural integrity of white matter tracts. The results of our study demonstrate regional age-related changes in the prefrontal white matter tracts of the human brain. This study was cross-sectional and therefore additional longitudinal studies are needed to confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe O, Aoki S, Hayashi N, Yamada H, Kunimatsu A, Mori H, Yoshikawa T, Okubo T, Ohtomo K (2002) Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol Aging 23:433–441

    Article  PubMed  Google Scholar 

  • Aboitiz F, Rodríguez E, Olivares R, Zaidel E (1996) Age-related changes in fibre composition of the human corpus callosum: sex differences. Neuroreport 7:1761–1764

    Article  PubMed  CAS  Google Scholar 

  • Allen JS, Bruss J, Brown CK, Damasio H (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26:1245–1260

    Article  PubMed  Google Scholar 

  • Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18

    Article  PubMed  CAS  Google Scholar 

  • Barzokis G, Beckson M, Lu PH, Nuecherterlein KH, Edwards N, Mintz J (2001) Age related changes in frontal and temporal lobes in men. Arch Gen Psychiatry 58:461–465

    Article  Google Scholar 

  • Bhagat YA, Beaulieu C (2004) Diffusion anisotropy in subcortical white matter and cortical gray matter: changes with aging and the role of CSF suppression. J Magn Reson Imaging 20:216–227

    Article  PubMed  Google Scholar 

  • Burgmans S, van Boxtel MP, Gronenschild EH, Vuurman EF, Hofman P, Uylings HB, Jolles J, Raz N (2010) Multiple indicators of age-related differences in cerebral white matter and the modifying effects of hypertension. Neuroimage 49(3):2083–2093

    Article  PubMed  CAS  Google Scholar 

  • Burzynska AZ, Preuschhof C, Bäckman L, Nyberg L, Li SC, Lindenberger U, Heekeren HR (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. NeuroImage 49:2104–2112

    Article  PubMed  CAS  Google Scholar 

  • Courchesne E, Chisum H, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press G (2000) Normal brain development and aging: quantitative analysis at in vivo MR Imaging in healthy volunteers. Radiology 216:672–682

    PubMed  CAS  Google Scholar 

  • Cowell PE, Sluming VA, Wilkinson ID, Cezayirli E, Romanowski CA, Webb JA, Keller SS, Mayes A, Roberts N (2007) Effects of sex and age on regional prefrontal brain volume in two human cohorts. Eur J Neurosci 25:307–318

    Article  PubMed  Google Scholar 

  • Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a frontal assessment battery at bedside. Neurology 55:1621–1626

    PubMed  CAS  Google Scholar 

  • Fjell AM, Walhovd KB, Westlye LT, Østby Y, Tamnes CK, Jernigan TL, Gamst A, Dale AM (2010) When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies. Neuroimage 50(4):1376–1383

    Article  PubMed  Google Scholar 

  • Flechsig P (1901) Developmental myelogenetic localisation of the cerebral cortex in the human subject. Lancet 19:1027–1029

    Article  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Fuster JM (2008) The prefrontal cortex. 4th edn. Academic Press, Elsevier, pp 7–59. http://www.elsevierdirect.com/product.jsp?isbn=9780123736444

  • Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain, part I: volumetric MR imaging analysis. Am J Neuroradiol 23(8):1327–1333

    PubMed  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101(21):8174–8179

    Article  PubMed  CAS  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of aging in 465 normal adult human brains. Neuroimage 14:21–36

    Article  PubMed  CAS  Google Scholar 

  • Grieve SM, Clark CR, Williams LM, Peduto AJ, Gordon E (2005) Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp 25:391–401

    Article  PubMed  Google Scholar 

  • Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E (2007) Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. Am J Neuroradiol 28:226–235

    PubMed  CAS  Google Scholar 

  • Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS (2009) Aging of cerebral white matter: a review of MRI findings. Int J Geriatr Psychiatry 24:109–117

    Article  PubMed  Google Scholar 

  • Hasan KM, Kamali A, Iftikhar A, Kramer LA, Papanicolaou AC, Fletcher JM, Ewing-Cobbs L (2009) Diffusion tensor tractography quantification of the human corpus callosum fiber pathways across the lifespan. Brain Res 1249:91–100

    Article  PubMed  CAS  Google Scholar 

  • Hasan KM, Kamali A, Abid H, Kramer LA, Fletcher JM, Ewing-Cobbs L (2010) Quantification of the spatiotemporal microstructural organization of the human brain association, projection and commissural pathways across the lifespan using diffusion tensor tractography. Brain Struct Funct 214(4):361–73

    Google Scholar 

  • Hsu JL, Leemans A, Bai CH, Lee CH, Tsai YF, Chiu HC, Chen WH (2008) Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study. NeuroImage 39:566–577

    Article  PubMed  Google Scholar 

  • Jernigan T, Archibald S, Fennema-Notestine C, Gamst A, Stout J, Bonner J, Hesselink J (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22:581–591

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81:106–116

    Article  PubMed  Google Scholar 

  • Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51:807–815

    Article  PubMed  Google Scholar 

  • Kaufer DI (2007) The dorsolateral and cingulate cortex. In: Miller BL, Cummings JL (eds) The human frontal lobes. The Guilford press, New York, pp 44–58

    Google Scholar 

  • Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372

    Article  PubMed  Google Scholar 

  • Landman BA, Farrell JA, Jones CK, Smith SA, Prince JL, Mori S (2007) Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. NeuroImage 36:1123–1138

    Article  PubMed  Google Scholar 

  • Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 40:1044–1055

    Article  PubMed  CAS  Google Scholar 

  • Mackey S, Petrides M (2009) Architectonic mapping of the medial region of the human orbitofrontal cortex by density profiles. Neuroscience 159(3):1089–1107

    Article  PubMed  CAS  Google Scholar 

  • Madden DJ, Bennett IJ, Song AW (2009) Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging. Neuropsychol Rev 19:415–435

    Article  PubMed  Google Scholar 

  • Malykhin NV, Bouchard TP, Ogilvie CJ, Coupland NJ, Seres P, Camicioli R (2007) Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Res: Neuroimaging 155:155–165

    Article  PubMed  Google Scholar 

  • Malykhin N, Concha L, Seres P, Beaulieu C, Coupland NJ (2008) Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts. Psychiatry Res: Neuroimaging 164:132–142

    Article  PubMed  Google Scholar 

  • Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462:144–152

    Article  PubMed  Google Scholar 

  • Mattis S (1988) Dementia rating scale professional manual. Psychological Assessment Resources, Odessa

    Google Scholar 

  • McLaughlin NC, Paul RH, Grieve SM, Williams LM, Laidlaw D, DiCarlo M, Clark CR, Whelihan W, Cohen RA, Whitford TJ, Gordon E (2007) Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan. Int J Dev Neurosci 25:215–221

    Article  PubMed  Google Scholar 

  • Meier-Ruge W, Ulrich J, Bruhlmann M, Meier E (1992) Age-related white matter atrophy in the human brain. Ann N Y Acad Sci 673:260–269

    Article  PubMed  CAS  Google Scholar 

  • Michielse S, Coupland NJ, Camicioli R, Carter R, Seres P, Sabino J, Malykhin N (2010) Selective effects of aging on brain white matter microstructure: a diffusion tensor imaging tractography study. NeuroImage 52:1190–1201

    Article  PubMed  Google Scholar 

  • Ongür D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460(3):425–449

    Article  PubMed  Google Scholar 

  • Orzhekhovskaia NS (1975) Comparative study of formation of the frontal cortex of the brain of monkeys and man in ontogenesis. Arkh Anat Gistol Embriol 68(3):43–49

    PubMed  CAS  Google Scholar 

  • Pagani E, Agosta F, Rocca MA, Caputo D, Filippi M (2008) Voxel-based analysis derived from fractional anisotropy images of white matter volume changes with aging. NeuroImage 41:657–667

    Article  PubMed  Google Scholar 

  • Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51:874–887

    PubMed  CAS  Google Scholar 

  • Pfefferbaum A, Sullivan EV, Hedehus M, Lim KO, Adalsteinsson E, Moseley M (2000) Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 44:259–268

    Article  PubMed  CAS  Google Scholar 

  • Price JL (2007) Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann N Y Acad Sci 1121:54–71

    Article  PubMed  Google Scholar 

  • Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex 5:307–322

    Article  PubMed  CAS  Google Scholar 

  • Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30:730–748

    Article  PubMed  Google Scholar 

  • Raz N, Kennedy KM (2009) A systems approach to the aging brain: neuroanatomical changes, their modifiers, and cognitive correlates. In: Jagust W, D’Esposito M (eds) Imaging the aging brain. Oxford University Press, New York, pp 43–70

  • Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, Loken WJ, Thornton AE, Acker JD (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282

    Article  PubMed  CAS  Google Scholar 

  • Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: Replicability of regional differences in volume. Neurobiol Aging 25:377–396

    Article  PubMed  Google Scholar 

  • Resnick S, Lamar M, Driscoll I (2007) Vulnerability of the orbitofrontal cortex to age-associated structural and functional brain changes. Ann N Y Acad Sci 1121:562–575

    Article  PubMed  Google Scholar 

  • Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, Rosen BR, Fischl B, Corkin S, Rosas HD, Dale AM (2005a) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26:1215–1227

    Article  PubMed  CAS  Google Scholar 

  • Salat DH, Tuch DS, Hevelone ND, Fischl B, Corkin S, Rosas HD, Dale AM (2005b) Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 1064:37–49

    Article  PubMed  CAS  Google Scholar 

  • Salat DH, Greve DN, Pacheco JL, Quinn BT, Helmer KG, Buckner RL, Fischl B (2009) Regional white matter volume differences in nondemented aging and Alzheimer’s disease. NeuroImage 44(4):1247–1258

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya D (2006) Fiber pathways of the brain. Oxford University Press, New York, p 654

    Book  Google Scholar 

  • Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Markesbery WR (2007) Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging 28:1075–1087

    Article  PubMed  Google Scholar 

  • Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C (2005) Diffusion tensor imaging of neurodevelopment in children and young adults. NeuroImage 26:1164–1173

    Article  PubMed  Google Scholar 

  • Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage 20:1714–1722

    Article  PubMed  Google Scholar 

  • Stadlbauer A, Salomonowitz E, Strunk G, Hammen T, Ganslandt O (2008) Age-related degradation in the central nervous system: assessment with diffusion-tensor imaging and quantitative fiber tracking. Radiology 247:179–188

    Article  PubMed  Google Scholar 

  • Stuss DT, Alexander MP (2000) Executive functions and the frontal lobes: a conceptual view. Psychol Res 63:289–298

    Article  PubMed  CAS  Google Scholar 

  • Sullivan EV, Pfefferbaum A (2006) Diffusion tensor imaging and aging. Neurosci Biobehav Rev 30:749–761

    Article  PubMed  Google Scholar 

  • Sullivan EV, Adalsteinsson E, Hedehus M, Ju C, Moseley M, Lim KO, Pfefferbaum A (2001) Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport 12:99–104

    Article  PubMed  CAS  Google Scholar 

  • Sullivan EV, Adalsteinsson E, Pfefferbaum A (2006) Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb Cortex 16:1030–1039

    Article  PubMed  Google Scholar 

  • Sullivan EV, Rohlfing T, Pfefferbaum A (2010) Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: Relations to timed performance. Neurobiol Aging 31:464–481

    Article  PubMed  Google Scholar 

  • Tang Y, Nyengaard JR, Pakkenberg B, Gundersen HJ (1997) Age-induced white matter changes in the human brain: a stereological investigation. Neurobiol Aging 18:609–615

    Article  PubMed  CAS  Google Scholar 

  • Uylings HB, Sanz-Arigita EJ, de Vos K, Pool CW, Evers P, Rajkowska G (2010) 3-D cytoarchitectonic parcellation of human orbitofrontal cortex correlation with postmortem MRI. Psychiatry Res 183(1):1–20

    Article  PubMed  Google Scholar 

  • Voineskos AN, Rajji TK, Lobaugh NJ, Miranda D, Shenton ME, Kennedy JL, Pollock BG, Mulsant BH (2010) Age-related decline in white matter tract integrity and cognitive performance: A DTI tractography and structural equation modeling study. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.02.009 (Epub ahead of print)

  • Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van Zijl P, Mori S (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36:630–634

    Article  PubMed  Google Scholar 

  • Watson D, Weber K, Assenheimer JS, Clark LA, Strauss ME, McCormick RA (1995) Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. J Abnorm Psychol 104:3–14

    Article  PubMed  CAS  Google Scholar 

  • Yesavage JA (1988) Geriatric Depression Scale. Psychopharmacol Bull 24(4):709–711. http://www.ncbi.nlm.nih.gov/pubmed/3249773

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (CIHR MOP 64413 to NC, CIHR MOP 67132 to RC). Personnel support: Alberta Heritage Foundation for Medical Research (AHFMR) (NC); Office of the Provost and Vice-President (Academic), University of Alberta (SV).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Malykhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malykhin, N., Vahidy, S., Michielse, S. et al. Structural organization of the prefrontal white matter pathways in the adult and aging brain measured by diffusion tensor imaging. Brain Struct Funct 216, 417–431 (2011). https://doi.org/10.1007/s00429-011-0321-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0321-1

Keywords

Navigation