Skip to main content

Advertisement

Log in

Pallidothalamic-projecting neurons in Macaca fascicularis co-express GABAergic and glutamatergic markers as seen in control, MPTP-treated and dyskinetic monkeys

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

GABAergic neurons within the internal division of the globus pallidus (GPi) are the main source of basal ganglia output reaching the thalamic ventral nuclei in monkeys. Following dopaminergic denervation, pallidothalamic-projecting neurons are known to be hyperactive, whereas a reduction in GPi activity is typically observed in lesioned animals showing levodopa-induced dyskinesia. Besides the mRNAs coding for GABAergic markers (GAD65 and GAD67), we show that all GPi neurons innervating thalamic targets also express transcripts for the isoforms 1 and 2 of the vesicular glutamate transporter (vGlut1 and vGlut2 mRNA). Indeed, dual immunofluorescent detection of GAD67 and vGlut1/2 confirmed the data gathered from in situ hybridization experiments, therefore demonstrating that the detected mRNAs are translated into the related proteins. Furthermore, the dopaminergic lesion resulted in an up-regulation of expression levels for both GAD65 and GAD67 mRNA within identified pallidothalamic-projecting neurons. This was coupled with a down-regulation of GAD65/67 mRNA expression levels in GPi neurons innervating thalamic targets in monkeys showing levodopa-induced dyskinesia. By contrast, the patterns of gene expression for both vGlut1 and vGlut2 mRNAs remained unchanged across GPi projection neurons in control, MPTP-treated and dyskinetic monkeys. In summary, both GABAergic and glutamatergic markers were co-expressed by GPi efferent neurons in primates. Although the status of the dopaminergic system directly modulates the expression levels of GAD65/67 mRNA, the observed expression of vGlut1/2 mRNA is not regulated by either dopaminergic removal or by continuous stimulation with dopaminergic agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  • Barroso-Chinea P, Aymerich MS, Castle MM, Pérez-Manso M, Tuñón T, Erro E, Lanciego JL (2007a) Detection of two different mRNAs in a single section by dual in situ hybridization: a comparison between colorimetric and fluorescent detection. J Neurosci Meth 162:119–128

    Article  CAS  Google Scholar 

  • Barroso-Chinea P, Castle M, Aymerich MS, Pérez-Manso M, Erro E, Tuñón T, Lanciego JL (2007b) Expression of the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat thalamus. J Comp Neurol 501:703–715

    Article  PubMed  CAS  Google Scholar 

  • Barroso-Chinea P, Rico AJ, Pérez-Manso M, Roda E, López IP, Luis-Ravelo D, Lanciego JL (2008) Glutamatergic pallidothalamic projections and their implications in the pathophysiology of Parkinson’s disease. Neurobiol Dis 31:422–432

    Article  PubMed  CAS  Google Scholar 

  • Crossman AR (1987) Primate models of dyskinesia: the experimental approach in the study of basal ganglia-related involuntary movement disorders. Neuroscience 21:1–40

    Article  PubMed  CAS  Google Scholar 

  • Dal Bo G, St-Gelais F, Danik M, Williams S, Cotton M, Trudeau L-E (2004) Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J Neurochem 88:1398–1405

    Article  PubMed  CAS  Google Scholar 

  • Danik M, Cassoly E, Manseau F, Sotty F, Mouginot D, Williams S (2005) Frequent coexpression of the vesicular glutamate transporter 1 and 2 genes, as well as coexpression with genes for choline acetyltransferase or glutamic acid decarboxylase in neurons of the rat brain. J Neurosci Res 81:506–521

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:266–271

    Article  Google Scholar 

  • Descarries L, Bérubé-Carrière N, Riad M, Dal Bo G, Méndez JA, Trudeau L-E (2008) Glutamate in dopamine neurons: synaptic versus diffuse transmission. Brain Res Rev 58:290–302

    Article  PubMed  CAS  Google Scholar 

  • Fattorini G, Verderio C, Melone M, Giovedi S, Benfenati F, Matteoli M, Conti F (2009) VGLUT1 and VGAT are sorted to the same population of synaptic vesicles in subsets of cortical axon terminals. J Neurochem 110:1538–1546

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellochio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98–103

    Article  PubMed  CAS  Google Scholar 

  • Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Lira G, Lamas M, Romo-Parra H, Gutiérrez R (2005) Programmed and induced phenotype of hippocampal granule cells. J Neurosci 25:6039–6046

    Article  Google Scholar 

  • Gritti I, Henny P, Galloni F, Mainville L, Mariotti M, Jones BE (2006) Stereological estimates of the basal ganglia forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphatase-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience 143:1051–1064

    Article  PubMed  CAS  Google Scholar 

  • Gu X-L (2010) Deciphering the corelease of glutamate from dopaminergic terminals derived from the ventral tegmental area. J Neurosci 30:13549–13551

    Article  PubMed  CAS  Google Scholar 

  • Guridi J, Herrero MT, Luquin MR, Guillén J, Ruberg M, Laguna J, Vila M, Javoy-Agid F, Agid Y, Hirsch E, Obeso JA (1996) Subthalamotomy in parkinsonian monkeys. Behavioral and biochemical analysis. Brain 119:1717–1727

    Article  PubMed  Google Scholar 

  • Harding BN (1973) An ultrastructural study on the termination of afferent fibers within the ventrolateral and centre median nuclei of the monkey thalamus. Brain Res 54:341–346

    Article  PubMed  CAS  Google Scholar 

  • Harding BN, Powell TP (1977) An electron microscopic study of the centre median and ventrolateral nuclei of the thalamus in the monkey. Phil Trans R Soc London B 279:357–412

    Article  CAS  Google Scholar 

  • Herrero MT, Levy R, Ruberg M, Luquin MR, Villares J, Guillen J, Faucheux B, Javoy-Agid F, Guridi J, Agid Y, Obeso JA, Hirsch EC (1996) Consequence of nigrostriatal denervation and L-dopa therapy on the expression of glutamic acid decarboxylase messenger mRNA in the pallidum. Neurology 47:219–224

    Google Scholar 

  • Hnasko TS, Chumba N, Zhang H, Goh GY, Sulzer D, Palmiter RD, Rayport S, Edwards RH (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65:643–656

    Article  PubMed  CAS  Google Scholar 

  • Hur EE, Zaborszky L (2005) Vglut2 afferents to the medial prefrontal and primary somatosensory cortex: a combined retrograde tracing and in situ hybridization. J Comp Neurol 483:351–373

    Article  PubMed  Google Scholar 

  • Illinsky IA, Kultas-Illinsky K (1984) An autoradiographic study of topographical relationships between pallidal and cerebellar projections to the cat thalamus. Exp Brain Res 54:95–106

    Article  Google Scholar 

  • Illinsky IA, Kultas-Illinsky K, Smith KR (1982) Organization of the basal ganglia inputs to the thalamus. A light and electron microscopic study in the cat. Appl Neurophysiol 45:230–237

    Google Scholar 

  • Illinsky AI, Yi H, Kultas-Illinsky K (1997) Mode of termination of pallidal afferents to the thalamus: a light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta. J Comp Neurol 386:601–612

    Article  Google Scholar 

  • Kha HT, Flinkelstein DI, Pow DV, Lawrence AJ, Horne MK (2000) Study of projections from the entopeduncular nucleus to the thalamus of the rat. J Comp Neurol 426:366–377

    Article  PubMed  CAS  Google Scholar 

  • Kurlan R, Kim MH, Gash DM (1991) Oral levodopa dose–response study in MPTP-induced hemiparkinsonian monkeys: assessment with a new rating scale for monkey parkinsonism. Mov Disord 6:111–118

    Article  PubMed  CAS  Google Scholar 

  • Martin RF, Bowden DM (1997) Template Atlas of the primate brain. University of Washington, Seattle

  • Murakami S, Kubota Y, Kito S, Shimada S, Takagi H, Wu J-Y, Inagaki S (1989a) The coexistence of substance P- and glutamic acid decarboxylase-like immunoreactivity in the entopeduncular nucleus of the rat. Brain Res 485:403–406

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Inagaki S, Shimada S, Kubota Y, Kito S, Ogawa N, Takagi H (1989b) The colocalization of substance P- and somatostatin-like peptides in neurons of the entopeduncular nucleus of rats. Peptides 10:973–977

    Article  PubMed  CAS  Google Scholar 

  • Parent A, Gravel S, Boucher R (1981) The origin of forebrain afferents to the habenula in the rat, cat and monkey. Brain Res Bull 6:23–38

    Article  PubMed  CAS  Google Scholar 

  • Pedneault S, Soghomonian J-J (1994) Glutamate decarboxylase (GAD65) mRNA levels in the striatum and pallidum of MPTP-treated monkeys. Mol Brain Res 25:351–354

    Article  PubMed  CAS  Google Scholar 

  • Penney JB Jr, Young AB (1981) GABA as the pallidothalamic neurotransmitter: implications for basal ganglia function. Brain Res 207:195–199

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar N, Elisevich K, Flumerfelt BA (1994) Parvalbumin-containing GABAergic neurons in the basal ganglia output system of the rat. J Comp Neurol 350:324–336

    Article  PubMed  CAS  Google Scholar 

  • Rico AJ, Barroso-Chinea P, Conte-Perales L, Roda E, Gómez-Bautista V, Gendive M, Obeso JA, Lanciego JL (2010) A direct projection from the subthalamic nucleus to the ventral thalamus in monkeys. Neurobiol Dis 39:381–392

    Article  PubMed  Google Scholar 

  • Sandler R, Smith AD (1991) Coexistence of GABA and glutamate in mossy fiber terminals of the primate hippocampus: an ultrastructural study. J Comp Neurol 303:177–192

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Wade TV (2003) Experimental parkinsonism is associated with increased pallidal GAD gene expression and is reversed by site-directed antisense gene therapy. Mov Disord 18:32–40

    Article  PubMed  Google Scholar 

  • Sidibé M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey. I. Topography, synaptic organization of the pallidothalamic projection. J Comp Neurol 382:323–347

    Article  PubMed  Google Scholar 

  • Sidibé M, Peré J-F, Smith Y (2002) Nigral and pallidal inputs to functionally segregated thalamostriatal neurons in the centromedian/parafascicular intralaminar nuclear complex in monkey. J Comp Neurol 447:286–299

    Article  PubMed  Google Scholar 

  • Soghomonian J-J, Chesselet MF (1992) Effects of nigrostriatal lesions on the levels of messenger mRNAs encoding two isoforms of glutamic acid decarboxylase in the globus pallidus and entopeduncular nucleus of the rat. Synapse 11:124–133

    Article  PubMed  CAS  Google Scholar 

  • Soghomonian J-J, Pedneault S, Audet G, Parent A (1994) Increased glutamate decarboxylase mRNA levels in the striatum, pallidum of MPTP-treated monkeys. J Neurosci 14:6256–6265

    PubMed  CAS  Google Scholar 

  • Stephenson DT, Li Q, Simmons C, Connell MA, Meglasson MD, Merchant K, Emborg ME (2005) Expression of GAD65 and GAD67 immunoreactivity in MPTP-treated monkeys with or without L-DOPA administration. Neurobiol Dis 20:347–359

    Article  PubMed  CAS  Google Scholar 

  • Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233

    Article  PubMed  CAS  Google Scholar 

  • Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, Berlin J, Deisseroth K, Rice ME, Tepper JM, Koos T (2010) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci 30:7105–7110

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood FG, Aliane V, Boekel AJ, Hur EE, Zaborszky L, Barroso-Chinea P, Härtig W, Lanciego JL, Witter MP (2008) Origin of calretinin-containing vesicular glutamate transporter 2-coexpressing fiber terminals in the entorhinal cortex of the rat. J Comp Neurol 506:359–370

    Article  PubMed  CAS  Google Scholar 

  • Zander J-F, Münster-Wandowski A, Brunk I, Pahner I, Gómez-Lira G, Heinemann U, Guitiérrez R, Laube G, Ahnert-Hilger G (2010) Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J Neurosci 30:7634–7645

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Ministerio de Ciencia e Innovación (BFU2009-08351), CIBERNED (CB06/05/0006), Departamento de Salud, Gobierno de Navarra and by the UTE project/Foundation for Applied Medical Research (FIMA). Salary for S.S. was partially supported by a grant from Mutual Médica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Lanciego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conte-Perales, L., Rico, A.J., Barroso-Chinea, P. et al. Pallidothalamic-projecting neurons in Macaca fascicularis co-express GABAergic and glutamatergic markers as seen in control, MPTP-treated and dyskinetic monkeys. Brain Struct Funct 216, 371–386 (2011). https://doi.org/10.1007/s00429-011-0319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0319-8

Keywords

Navigation