Skip to main content
Log in

Laminar distribution of neurotransmitter receptors in different reeler mouse brain regions

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Mapping of multiple receptors of neurotransmitters provides insight into the spatial distribution of neurotransmission-relevant molecules in the cerebral cortex. During development, lack of reelin leads to impaired migration, disturbed lamination of the hippocampus and inverted neocortical layering. In the adult, reelin may regulate synaptic plasticity by modulating neurotransmitter receptor function. Using quantitative in vitro receptor autoradiography, different receptors, in particular, the binding site densities and laminar distribution of various glutamate, GABA, muscarinic and nicotinic acetylcholine, serotonin, dopamine and adenosine receptors, were analyzed in cortical and subcortical structures of reeler and wild-type brains. Differential changes in the laminar distribution, maximum binding capacity (B max) and regional density of neurotransmitter receptors were found in the reeler brain. A decrease of whole brain B max was found for adenosine A1 and GABAA receptors. In the forebrain, several binding sites were differentially up- or down-regulated (kainate, A1, benzodiazepine, 5-HT1, M2, α1 and α2). In the hippocampus, a significant decrease of GABAB, 5-HT1 and \( {\text{A}}_1^{\prime} \) receptors were observed. The density of M2 receptors increased, while other receptors remained unchanged. In the neocortex, some receptors demonstrated an obviously inverted laminar distribution (AMPA, kainate, NMDA, GABAB, 5-HT1, M1, M3, nAch), while the distribution of others (A1, GABAA, benzodiazepine, 5-HT2, muscarinic M2, adrenergic α1, α2) seemed to be less affected. Thus, the laminar receptor distribution is modulated by the developmental impairment and suggests and reflects partially the laminar inversion in reeler mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Angevine JB, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    Article  PubMed  Google Scholar 

  • Beffert U, Weeber EJ, Morfini G, Ko J, Brady ST, Tsai LH, Sweatt JD, Herz J (2004) Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J Neurosci 24:1897–1906

    Article  PubMed  CAS  Google Scholar 

  • Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer RE, Herz J (2005) Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor ApoER2. Neuron 47:567–579

    Article  PubMed  CAS  Google Scholar 

  • Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D, Liu QY, Colton CA, Barker JL (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19:4449–4461

    PubMed  CAS  Google Scholar 

  • Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99:691–709

    PubMed  CAS  Google Scholar 

  • Botella-Lopez A, Burgaya F, Gavin R, Garcia-Ayllon MS, Gomez-Tortosa E, Pena-Casanova J, Urena JM, Del Rio JA, Blesa R, Soriano E, Saéz-Valero J (2006) Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci USA 103:5573–5578

    Article  PubMed  CAS  Google Scholar 

  • Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 256:293–302

    PubMed  Google Scholar 

  • Caviness VS, Frost DO (1983) Thalamocortical projections in the reeler mutant mouse. J Comp Neurol 219:182–202

    Article  PubMed  Google Scholar 

  • Caviness VS, Sidman RL (1973) Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice. An autoradiographic analysis. J Comp Neurol 148:141–151

    Article  PubMed  Google Scholar 

  • Chen Y, Beffert U, Ertunc M, Tang TS, Kavalali ET, Bezprozvanny I, Herz J (2005) Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 25:8209–8216

    Article  PubMed  CAS  Google Scholar 

  • Chin J, Massaro CM, Palop JJ, Thwin MT, Yu GQ, Bien-Ly N, Bender A, Mucke L (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J Neurosci 27:2727–2733

    Article  PubMed  CAS  Google Scholar 

  • Cremer CM, Palomero-Gallagher N, Bidmon HJ, Schleicher A, Speckmann EJ, Zilles K (2009) Pentylenetetrazole-induced seizures affect binding site densities for GABA, glutamate and adenosine receptors in the rat brain. Neuroscience 163:490–499

    Article  PubMed  CAS  Google Scholar 

  • Cremer CM, Bidmon H-J, Görg B, Palomero-Gallagher N, Lopez Escobar J, Speckmann E-J, Zilles K (2010) Inhibition of glutamate/glutamine cycle in vivo results in decreased benzodiazepine binding and differentially regulated GABAergic subunit expression in the rat brain. Epilepsia 51(8):1446–1455

    Google Scholar 

  • D’Arcangelo G (2005) The reeler mouse: anatomy of a mutant. Int Rev Neurobiol 71:383–417

    Article  PubMed  Google Scholar 

  • D’Arcangelo G (2006) Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav 8:81–90

    Article  PubMed  Google Scholar 

  • D’Arcangelo G, Miao GG, Curran T (1996) Detection of the reelin breakpoint in reeler mice. Brain Res Mol Brain Res 39:234–236

    Article  PubMed  Google Scholar 

  • de Bergeyck V, Nakajima K, Lambert de Rouvroit C, Naerhuyzen B, Goffinet AM, Miyata T, Ogawa M, Mikoshiba K (1997) A truncated Reelin protein is produced but not secreted in the ‘Orleans’ reeler mutation (Reln[rl-Orl]). Brain Res Mol Brain Res 50:85–90

    Article  PubMed  Google Scholar 

  • Dekimoto H, Terashima T, Katsuyama Y (2010) Dispersion of the neurons expressing layer specific markers in the reeler brain. Dev Growth Differ 52:181–193

    Article  PubMed  CAS  Google Scholar 

  • Deutsch SI, Rosse RB, Lakshman RM (2006) Dysregulation of tau phosphorylation is a hypothesized point of convergence in the pathogenesis of Alzheimer’s disease, frontotemporal dementia and schizophrenia with therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 30:1369–1380

    Article  PubMed  CAS  Google Scholar 

  • Durakoglugil MS, Chen Y, White CL, Kavalali ET, Herz J (2009) Reelin signaling antagonizes beta-amyloid at the synapse. Proc Natl Acad Sci USA 106:15938–15943

    Article  PubMed  CAS  Google Scholar 

  • Fatemi SH (2008) In: Reelin glycoprotein: structure, biology and roles in health and disease. Springer Science and Business Media, New York

  • Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005a) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Chen JF, Masino SA, Vaugeois JM (2005b) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 45:385–412

    Article  PubMed  CAS  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Hashimoto M, Suzuki M, Ishiwata K (2008) Adenosine A(1) receptors using 8-dicyclopropylmethyl-1-[(11)C]methyl-3-propylxanthine PET in Alzheimer’s disease. Ann Nucl Med 22:841–847

    Article  PubMed  Google Scholar 

  • Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P (2007) NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci 27:10165–10175

    Article  PubMed  CAS  Google Scholar 

  • Haas CA, Frotscher M (2010) Reelin deficiency causes granule cell dispersion in epilepsy. Exp Brain Res 200:141–149

    Article  PubMed  Google Scholar 

  • Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M (2007) Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development 134:3883–3891

    Article  PubMed  CAS  Google Scholar 

  • Hamburgh M (1960) Observations on the neuropathology of “Reeler”, a neurological mutation in mice. Experientia 16:460–461

    Article  Google Scholar 

  • Hamburgh M (1963) Analysis of the postnatal developmental effects of “reeler”, a neurological mutation in mice. A study in developmental genetics. Dev Biol 19:165–185

    Article  PubMed  CAS  Google Scholar 

  • Heinrich C, Nitta N, Flubacher A, Müller MC, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26:4701–4713

    Article  PubMed  CAS  Google Scholar 

  • Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733–737

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Mackay KB, Dewar D, McCulloch J (1993) Differential alterations in adenosine A1 and kappa 1 opioid receptors in the striatum in Alzheimer’s disease. Brain Res 616:211–217

    Article  PubMed  CAS  Google Scholar 

  • Jaarsma D, Sebens JB, Korf J (1991) Reduction of adenosine A1-receptors in the perforant pathway terminal zone in Alzheimer hippocampus. Neurosci Lett 121:111–114

    Article  PubMed  CAS  Google Scholar 

  • Jansen KL, Faull RL, Dragunow M, Synek BL (1990) Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors-an autoradiographic study. Neuroscience 39:613–627

    Article  PubMed  CAS  Google Scholar 

  • Kalaria RN, Sromek S, Wilcox BJ, Unnerstall JR (1990) Hippocampal adenosine A1 receptors are decreased in Alzheimer’s disease. Neurosci Lett 118:257–260

    Article  PubMed  CAS  Google Scholar 

  • Lambert de Rouvroit C, Goffinet AM (1998) The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol 150:1–106

    PubMed  CAS  Google Scholar 

  • Lopez-Bendito G, Molnar Z (2003) Thalamocortical development: how are we going to get there? Nat Rev Neurosci 4:276–289

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bendito G, Lujan R, et al (2003) Blockade of GABA(B) receptors alters the tangential migration of cortical neurons. Cereb Cortex 13:932–942

    Google Scholar 

  • Lujan R, Shigemoto R, Lopez-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130:567–580

    Article  PubMed  CAS  Google Scholar 

  • Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos Trans R Soc Lond B Biol Sci 281:1–28

    Article  PubMed  CAS  Google Scholar 

  • Marrone MC, Marinelli S, Biamonte F, Keller F, Sgobio CA, Ammassari-Teule M, Bernardi G, Mercuri NB (2006) Altered cortico-striatal synaptic plasticity and related behavioural impairments in reeler mice. Eur J Neurosci 24:2061–2070

    Article  PubMed  Google Scholar 

  • Matsuzaki H, Minabe Y, Nakamura K, Suzuki K, Iwata Y, Sekine Y, Tsuchiya KJ, Sugihara G, Suda S, Takei N, Nakahara D, Hashimoto K, Nairn AC, Mori N, Sato K (2007) Disruption of reelin signaling attenuates methamphetamine-induced hyperlocomotion. Eur J Neurosci 25:3376–3384

    Article  PubMed  Google Scholar 

  • Müller MC, Osswald M, Tinnes S, Haussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009) Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 216:390–397

    Article  PubMed  Google Scholar 

  • Niu S, Yabut O, D’Arcangelo G (2008) The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci 28:10339–10348

    Article  PubMed  CAS  Google Scholar 

  • Palomero-Gallagher N, Bidmon H-J, Cremer M, Schleicher A, Kircheis G, Reifenberger G, Kostopoulos G, Häussinger D, Zilles K (2009) Neurotransmitter receptor imbalances in motor cortex and basal ganglia in hepatic encephalopathy. Cell Physiol Biochem 24:291–306

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates.Second Edition. Academic Press, San Diego

    Google Scholar 

  • Prestwich SA, Forda SR, Dolphin AC (1987) Adenosine antagonists increase spontaneous and evoked transmitter release from neuronal cells in culture. Brain Res 405:130–139

    Article  PubMed  CAS  Google Scholar 

  • Qiu S, Zhao LF, Korwek KM, Weeber EJ (2006) Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J Neurosci 26:12943–12955

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Caviness VS Jr (1995) Cortical development: view from neurological mutants two decades later. Neuron 14:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Saéz-Valero J, Fodero LR, Sjogren M, Andreasen N, Amici S, Gallai V, Vanderstichele H, Vanmechelen E, Parnetti L, Blennow K, Small DH (2003) Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer’s disease. J Neurosci Res 72:520–526

    Article  PubMed  Google Scholar 

  • Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733

    Article  PubMed  CAS  Google Scholar 

  • Sheppard AM, Pearlman AL (1997) Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J Comp Neurol 378:173–179

    Article  PubMed  CAS  Google Scholar 

  • Simmons PA, Pearlman AL (1983) Receptive-field properties of transcallosal visual cortical neurons in the normal and reeler mouse. J Neurophysiol 50:838–848

    PubMed  CAS  Google Scholar 

  • Simmons PA, Lemmon V, Pearlman AL (1982) Afferent and efferent connections of the striate and extrastriate visual cortex of the normal and reeler mouse. J Comp Neurol 211:295–308

    Article  PubMed  CAS  Google Scholar 

  • Sinagra M, Verrier D, Frankova D, Korwek KM, Blahos J, Weeber EJ, Manzoni OJ, Chavis P (2005) Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J Neurosci 25:6127–6136

    Article  PubMed  CAS  Google Scholar 

  • Stanfield BB, Cowan WM (1979) The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:393–422

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 193:535–587

    Article  PubMed  CAS  Google Scholar 

  • Strazielle C, Hayzoun K, Derer M, Mariani J, Lalonde R (2006) Regional brain variations of cytochrome oxidase activity in Relnrl-orl mutant mice. J Neurosci Res 83:821–831

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Goto T, Miyama S, Nowakowski RS, Caviness VS Jr (1999) Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. J Neurosci 19:10357–10371

    PubMed  CAS  Google Scholar 

  • Terashima T, Inoue K, Inoue Y, Mikoshiba K (1987) Thalamic connectivity of the primary motor cortex of normal and reeler mutant mice. J Comp Neurol 257:405–421

    Article  PubMed  CAS  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    Article  PubMed  CAS  Google Scholar 

  • Ułas J, Brunner LC, Nguyen L, Cotman CW (1993) Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience 52:843–854

    Article  PubMed  Google Scholar 

  • Wagener RJ, Csaba D, Zhao S, Haas CA, Staiger JF (2010) The somatosensory cortex of reeler mutant mice show absent layering but intact formation and behavioral activation of columnar somatotopic maps. J Neurosci 30:15700–15709

    Article  PubMed  CAS  Google Scholar 

  • Ware ML, Fox JW, Gonzalez JL, Davis NM, Lambert de Rouvroit C, Russo CJ, Chua SC Jr, Goffinet AM, Walsh CA (1997) Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19:239–249

    Article  PubMed  CAS  Google Scholar 

  • Weeber EJ, Beffert U, Jones C, Christian JM, Förster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952

    Article  PubMed  CAS  Google Scholar 

  • Wirths O, Multhaup G, Czech C, Blanchard V, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 316:145–148

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Chai X, Förster E, Frotscher M (2004) Reelin is a positional signal for the lamination of dentate granule cells. Development 131:5117–5125

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339

    Article  PubMed  Google Scholar 

  • Zilles K, Qü MS, Kohling R, Speckmann EJ (1999) Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography. Neuroscience 94:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping. The methods. Elsevier, Amsterdam, pp 573–602

    Chapter  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat 205:417–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance by S. Buller, M. Cremer and S. Wilms is very much appreciated. We further thank Dr. Axel Schleicher for helpful comments on the data, and Drs. Iris Hack and Astrid Rollenhagen for their critical reading and comments on the final version of the manuscript. This work was supported by the Initiative and Networking Fund of the Helmholtz Association (Helmholtz Alliance on Mental Health in an Ageing Society).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim H. R. Lübke.

Additional information

The authors C. M. Cremer and J. H. R. Lübke have equally contributed to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1: Distribution of adrenergic α1 and α2 receptor subtypes in wild-type and reeler mice. Color-coded autoradiographs of a representative section of a wild-type (left) and reeler mouse (right) hemisphere showing the distribution of α1 (A, A1) and α2 (B, B1) receptors. A2, B2 Laminar distribution of α1 (upper right panel) and α2 (lower right panel) receptors in the primary somatosensory cortex of wild-type and the reeler mutant mice.

Supplementary material 1 (EPS 24752 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cremer, C.M., Lübke, J.H.R., Palomero-Gallagher, N. et al. Laminar distribution of neurotransmitter receptors in different reeler mouse brain regions. Brain Struct Funct 216, 201–218 (2011). https://doi.org/10.1007/s00429-011-0303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0303-3

Keywords

Navigation