Skip to main content
Log in

Bioluminescence imaging of Arc expression enables detection of activity-dependent and plastic changes in the visual cortex of adult mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

An Erratum to this article was published on 08 June 2011

Abstract

Induction of the activity-regulated cytoskeleton-associated protein gene (Arc), one of the immediate early genes, in the brain correlates with various sensory processes, natural behaviors, and pathological conditions. Arc is also involved in synaptic plasticity during development. Thus, in vivo monitoring of Arc expression is useful for the analysis of physiological and pathological conditions in the brain. Recently, in vivo imaging of Arc expression using various green fluorescent protein-based probes has been reported; however, these probes can only be applied for the detection of fluorescence signals from superficial layers of the cortex with some autofluorescence noise. Here, we generated a novel transgenic mouse strain to monitor the neuronal-activity-dependent Arc expression using bioluminescence signals in vivo. Because of the very high sensitivity with a high signal-to-noise ratio, we detected neuronal-activity-dependent plastic changes in the bioluminescence signal intensity in the mouse visual cortex after visual deprivation, suggesting structural plasticity after peripheral lesions in adults. We also detected drastic changes in bioluminescence signals after seizure induction with kainic acid. Our novel mouse strain will be valuable for the continuous monitoring of neuronal-activity-dependent Arc expression in the brain under physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonini A, Fagiolini M, Stryker MP (1999) Anatomical correlates of functional plasticity in mouse visual cortex. J Neurosci 19:4388–4406

    PubMed  CAS  Google Scholar 

  • Brandes C, Plautz JD, Stanewsky R, Jamison CF, Straume M, Wood KV, Kay SA, Hall JC (1996) Novel features of drosophila period transcription revealed by real-time luciferase reporting. Neuron 16:687–692. doi:10.1016/S0896-6273(00)80088-4

    Article  PubMed  CAS  Google Scholar 

  • Caviness VS Jr (1975) Architectonic map of neocortex of the normal mouse. J Comp Neurol 164:247–263. doi:10.1002/cne.901640207

    Article  PubMed  Google Scholar 

  • Chaudhari AJ, Darvas F, Bading JR, Moats RA, Conti PS, Smith DJ, Cherry SR, Leahy RM (2005) Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol 50:5421–5441. doi:10.1088/0031-9155/50/23/001

    Article  PubMed  Google Scholar 

  • Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52:445–459. doi:10.1016/j.neuron.2006.08.033

    Google Scholar 

  • Dickey CA, Loring JF, Montgomery J, Gordon MN, Eastman PS, Morgan D (2003) Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci 23:5219–5226

    PubMed  CAS  Google Scholar 

  • Dickey CA, Gordon MN, Mason JE, Wilson NJ, Diamond DM, Guzowski JF, Morgan D (2004) Amyloid suppresses induction of genes critical for memory consolidation in APP + PS1 transgenic mice. J Neurochem 88:434–442. doi:10.1111/j.1471-4159.2004.02185.x

    Article  PubMed  CAS  Google Scholar 

  • Dräger UC (1975) Receptive fields of single cells and topography in mouse visual cortex. J Comp Neurol 160:269–290. doi:10.1002/cne.901600302

    Article  PubMed  Google Scholar 

  • Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351:745–748. doi:10.1038/351745a0

    Article  PubMed  CAS  Google Scholar 

  • Eguchi M, Yamaguchi S (2009) In vivo and in vitro visualization of gene expression dynamics over extensive areas of the brain. Neuroimage 44:1274–1283. doi:10.1016/j.neuroimage.2008.10.046

    Article  PubMed  Google Scholar 

  • Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16:3274–3286

    PubMed  CAS  Google Scholar 

  • Grinevich V, Kolleker A, Eliava M, Takada N, Takuma H, Fukazawa Y, Shigemoto R, Kuhl D, Waters J, Seeburg PH, Osten P (2009) Fluorescent Arc/Arg3.1 indicator mice: a versatile tool to study brain activity changes in vitro and in vivo. J Neurosci Methods 184:25–36. doi:10.1016/j.jneumeth.2009.07.015

    Google Scholar 

  • Guthrie K, Rayhanabad J, Kuhl D, Gall C (2000) Odors regulate Arc expression in neuronal ensembles engaged in odor processing. Neuroreport 11:1809–1813

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2:1120–1124. doi:10.1038/16046

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001

    PubMed  CAS  Google Scholar 

  • Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21:5089–5098

    PubMed  CAS  Google Scholar 

  • Guzowski JF, Knierim JJ, Moser EI (2004) Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44:581–584. doi:10.1016/j.neuron.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  • Heintz N (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2:861–870. doi:10.1038/35104049

    Article  PubMed  CAS  Google Scholar 

  • Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, Takemoto-Kimura S, Worley PF, Bito H (2009) Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci USA 106:316–321. doi:10.1073/pnas.0806518106

    Google Scholar 

  • Keck T, Mrsic-Flogel TD, Vaz Afonso M, Eysel UT, Bonhoeffer T, Hübener M (2008) Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 11:1162–1167. doi:10.1038/nn.2181

    Article  PubMed  CAS  Google Scholar 

  • Kozlovsky N, Matar MA, Kaplan Z, Kotler M, Zohar J, Cohen H (2008) The immediate early gene Arc is associated with behavioral resilience to stress exposure in an animal model of posttraumatic stress disorder. Eur Neuropsychopharmacol 18:107–116. doi:10.1016/j.euroneuro.2007.04.009

    Article  PubMed  CAS  Google Scholar 

  • Kujala T, Alho K, Näätänen R (2000) Cross-modal reorganization of human cortical functions. Trends Neurosci 23:115–120. doi:10.1016/S0166-2236(99)01504-0

    Article  PubMed  CAS  Google Scholar 

  • Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200. doi:10.1523/JNEUROSCI.3432-04.2004

    Article  PubMed  CAS  Google Scholar 

  • Li L, Carter J, Gao X, Whitehead J, Tourtellotte WG (2005) The neuroplasticity-associated arc gene is a direct transcriptional target of early growth response (Egr) transcription factors. Mol Cell Biol 25:10286–10300. doi:10.1128/MCB.25.23.10286-10300.2005

    Article  PubMed  CAS  Google Scholar 

  • Link W, Konietzko U, Kauselmann G, Krug M, Schwanke B, Frey U, Kuhl D (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci USA 92:5734–5738

    Article  PubMed  CAS  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445. doi:10.1016/0896-6273(95)90299-6

    Article  PubMed  CAS  Google Scholar 

  • Martin JR (2008) In vivo brain imaging: fluorescence or bioluminescence, which to choose? J Neurogenet 22:285–307. doi:10.1080/01677060802298517

    Article  Google Scholar 

  • Matsuoka M, Yamagata K, Sugiura H, Yoshida-Matsuoka J, Norita M, Ichikawa M (2002) Expression and regulation of the immediate-early gene product Arc in the accessory olfactory bulb after mating in male rat. Neuroscience 111:251–258. doi:10.1016/S0306-4522(01)00620-0

    Article  PubMed  CAS  Google Scholar 

  • McCurry CL, Shepherd JD, Tropea D, Wang KH, Bear MF, Sur M (2010) Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation. Nat Neurosci 13:450–457. doi:10.1038/nn.2508

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD, Larsen MH (2006) Effects of stress and adrenalectomy on activity-regulated cytoskeleton protein (Arc) gene expression. Neurosci Lett 403:239–243. doi:10.1016/j.neulet.2006.04.040

    Article  PubMed  CAS  Google Scholar 

  • Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hübener M (2007) Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54:961–972. doi:10.1016/j.neuron.2007.05.028

    Article  PubMed  CAS  Google Scholar 

  • Muyrers JP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosome by ET-recombination. Nucleic Acids Res 27:1555–1557. doi:10.1093/nar/27.6.1555

    Article  PubMed  CAS  Google Scholar 

  • Ons S, Martí O, Armario A (2004) Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA. J Neurochem 89:1111–1118. doi:10.1111/j.1471-4159.2004.02396.x

    Article  PubMed  CAS  Google Scholar 

  • Palop JJ, Chin J, Bien-Ly N, Massaro C, Yeung BZ, Yu GQ, Mucke L (2005) Vulnerability of dentate granule cells to disruption of arc expression in human amyloid precursor protein transgenic mice. J Neurosci 25:9686–9693. doi:10.1523/JNEUROSCI.2829-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A, Mahlke C, Welzl H, Kobalz U, Stawrakakis A, Fernandez E, Waltereit R, Bick-Sander A, Therstappen E, Cooke SF, Blanquet V, Wurst W, Salmen B, Bösl MR, Lipp HP, Grant SG, Bliss TV, Wolfer DP, Kuhl D (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52:437–444. doi:10.1016/j.neuron.2006.08.024

  • Prescher JA, Contag CH (2010) Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 14:80–89. doi:10.1016/j.cbpa.2009.11.001

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Amaya V, Vazdarjanova A, Mikhael D, Rosi S, Worley PF, Barnes CA (2005) Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J Neurosci 25:1761–1768. doi:10.1523/JNEUROSCI.4342-04.2005

    Article  PubMed  CAS  Google Scholar 

  • Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT (2006) Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52:461–474. doi:10.1016/j.neuron.2006.09.031

    Google Scholar 

  • Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6:432–440. doi:10.1117/1.1413210

    Article  PubMed  CAS  Google Scholar 

  • Rickhag M, Teilum M, Wieloch T (2007) Rapid and long-term induction of effector immediate early genes (BDNF, Neuritin and Arc) in peri-infarct cortex and dentate gyrus after ischemic injury in rat brain. Brain Res 1151:203–210. doi:10.1016/j.brainres.2007.03.005

    Article  PubMed  CAS  Google Scholar 

  • Rosi S, Ramirez-Amaya V, Vazdarjanova A, Worley PF, Barnes CA, Wenk GL (2005) Neuroinflammation alters the hippocampal pattern of behaviorally induced Arc expression. J Neurosci 25:723–731. doi:10.1523/JNEUROSCI.4469-04.2005

    Article  PubMed  CAS  Google Scholar 

  • Sacco T, Sacchetti B (2010) Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science 329:649–656. doi:10.1126/science.1183165

    Article  PubMed  CAS  Google Scholar 

  • Sauer B (1987) Functional expression of the Cre-Lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    PubMed  CAS  Google Scholar 

  • Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38:977–985. doi:10.1016/S0896-6273(03)00323-4

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52:475–484. doi:10.1016/j.neuron.2006.08.034

    Google Scholar 

  • Steward O, Worley PF (2001) Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30:227–240. doi:10.1016/S0896-6273(01)00275-6

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Mercado E 3rd, Wang P, Shan X, Lee TC, Salvi RJ (2005) Changes in NMDA receptor expression in auditory cortex after learning. Neurosci Lett 374: 63-68. doi: 10.1016/j.neulet.2004.10.032

  • Tagawa Y, Kanold PO, Majdan M, Shatz CJ (2005) Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nat Neurosci 8:380–388. doi:10.1038/nn1410

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Rüttiger L, Panford-Walsh R, Singer W, Schulze H, Kilian SB, Hadjab S, Zimmermann U, Köpschall I, Rohbock K, Knipper M (2007) Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience 145:715–726. doi:10.1016/j.neuroscience.2006.11.067

    Google Scholar 

  • Temple MD, Worley PF, Steward O (2003) Visualizing changes in circuit activity resulting from denervation and reinnervation using immediate early gene expression. J Neurosci 23:2779–2788

    PubMed  CAS  Google Scholar 

  • Thompson JF, Hayes LS, Lloyd DB (1991) Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103:171–177

    Article  PubMed  CAS  Google Scholar 

  • Trnecková L, Rotllant D, Klenerová V, Hynie S, Armario A (2007) Dynamics of immediate early gene and neuropeptide gene response to prolonged immobilization stress: evidence against a critical role of the termination of exposure to the stressor. J Neurochem 100:905–914. doi:10.1111/j.1471-4159.2006.04278.x

    Article  PubMed  Google Scholar 

  • Vazdarjanova A, Guzowski JF (2004) Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci 24:6489–6496. doi:10.1523/JNEUROSCI.0350-04.2004

    Article  PubMed  CAS  Google Scholar 

  • Vazdarjanova A, Ramirez-Amaya V, Insel N, Plummer TK, Rosi S, Chowdhury S, Mikhael D, Worley PF, Guzowski JF, Barnes CA (2006) Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J Comp Neurol 498:317–329. doi:10.1002/cne.21003

    Article  PubMed  CAS  Google Scholar 

  • Wallace CS, Lyford GL, Worley PF, Steward O (1998) Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. J Neurosci 18:26–35

    PubMed  CAS  Google Scholar 

  • Wang KH, Majewska A, Schummers J, Farley B, Hu C, Sur M, Tonegawa S (2006) In vivo two-photon imaging reveals a role of Arc in enhancing orientation specificity in visual cortex. Cell 126:389–402. doi:10.1016/j.cell.2006.06.038

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Cong W, Shen H, Qian X, Henry M, Wang Y (2008) Overview of bioluminescence tomography-a new molecular imaging modality. Front Biosci 13:1281–1293. doi:10.2741/2761

    Article  PubMed  CAS  Google Scholar 

  • Zhu XD, Sadowski PD (1995) Cleavage-dependent ligation by the FLP recombinase. Characterization of a mutant FLP protein with an alteration in a catalytic amino acid. J Biol Chem 270:23044–23054. doi:10.1074/jbc.270.39.23044

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Buck LB (2006) Combinatorial effects of odorant mixes in olfactory cortex. Science 311:1477–1481. doi:10.1126/science.1124755

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zheng Li Xiang for his assistance in the initial steps of the modification of the Arc-BAC DNA. We also thank Professor Kaoru Inokuchi for help in fluorescence microscopy and Professor Yoshiaki Ohkuma for continuous encouragement. This work was supported by a grant from Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, and Food Safety Commission, Japan (No. 1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Mori.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00429-011-0334-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izumi, H., Ishimoto, T., Yamamoto, H. et al. Bioluminescence imaging of Arc expression enables detection of activity-dependent and plastic changes in the visual cortex of adult mice. Brain Struct Funct 216, 91–104 (2011). https://doi.org/10.1007/s00429-010-0297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-010-0297-2

Keywords

Navigation