Skip to main content
Log in

Cortico-basal ganglia circuitry: a review of key research and implications for functional connectivity studies of mood and anxiety disorders

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

There is considerable evidence that dysfunction of the cortico-basal ganglia circuits may be associated with several mood and anxiety disorders. However, it is unclear whether circuit abnormalities contribute directly either to the neurobiology of these conditions or to the manifestation of symptoms. Understanding the role of these pathways in psychiatric illness has been limited by an incomplete characterization of normal function. In recent years, studies using animal models and human functional imaging have greatly expanded the literature describing normal cortico-basal ganglia circuit function. In this paper, recent key studies of circuit function using human and animal models are reviewed and integrated with findings from other studies conducted over the previous decades. The literature suggests several hypotheses of cortico-basal ganglia circuitry function in mood and anxiety disorders that warrant further exploration. Hypotheses are proposed herein based upon the cortico-basal ganglia mechanisms of: (1) feedforward and feedback control, (2) circuit integration and (3) emotional control. These are presented as models of circuit function, which may be particularly relevant to future investigations using neuroimaging and functional connectivity analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abler B, Roebroeck A et al (2006) Investigating directed influences between activated brain areas in a motor-response task using fMRI. Magn Reson Imaging 24(2):181–185

    PubMed  Google Scholar 

  • Adler CM, Holland SK et al (2004) Changes in neuronal activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disord 6(6):540–549

    PubMed  Google Scholar 

  • Adolphs R, Tranel D et al (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372(6507):669–672

    CAS  PubMed  Google Scholar 

  • Aggleton JP, Burton MJ et al (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190(2):347–368

    CAS  PubMed  Google Scholar 

  • Aizenstein HJ, Butters MA et al (2005) Prefrontal and striatal activation during sequence learning in geriatric depression. Biol Psychiatry 58(4):290–296

    PubMed  Google Scholar 

  • Aizenstein HJ, Butters MA et al (2009) Altered functioning of the executive control circuit in late-life depression: episodic and persistent phenomena. Am J Geriatr Psychiatry 17(1):30–42

    PubMed  Google Scholar 

  • Albin RL, Young AB et al (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR (1985) Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J Neurophysiol 53(6):1417–1430

    CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR et al (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD et al (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    CAS  PubMed  Google Scholar 

  • Altshuler LL, Bookheimer SY et al (2005) Blunted activation in orbitofrontal cortex during mania: a functional magnetic resonance imaging study. Biol Psychiatry 58(10):763–769

    PubMed  Google Scholar 

  • Amaral DG, Insausti R (1992) Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex. Exp Brain Res 88(2):375–388

    CAS  PubMed  Google Scholar 

  • Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230(4):465–496

    CAS  PubMed  Google Scholar 

  • Anand A, Li Y et al (2009) Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res 171(3):189–198

    PubMed  Google Scholar 

  • Anseloni VC, Coimbra NC et al (1999) A comparative study of the effects of morphine in the dorsal periaqueductal gray and nucleus accumbens of rats submitted to the elevated plus-maze test. Exp Brain Res 129(2):260–268

    CAS  PubMed  Google Scholar 

  • Aosaki T, Tsubokawa H et al (1994) Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14(6):3969–3984

    CAS  PubMed  Google Scholar 

  • Apicella P, Deffains M et al (2009) Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context. Eur J Neurosci 30(3):515–526

    PubMed  Google Scholar 

  • Arkadir D, Morris G et al (2004) Independent coding of movement direction and reward prediction by single pallidal neurons. J Neurosci 24(45):10047–10056

    CAS  PubMed  Google Scholar 

  • Arnone D, Cavanagh J et al (2009) Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry 195(3):194–201

    PubMed  Google Scholar 

  • Aubert I, Ghorayeb I et al (2000) Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol 418(1):22–32

    CAS  PubMed  Google Scholar 

  • Bacon SJ, Headlam AJ et al (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720(1–2):211–219

    CAS  PubMed  Google Scholar 

  • Bamford NS, Zhang H et al (2004) Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 42(4):653–663

    CAS  PubMed  Google Scholar 

  • Bamford NS, Zhang H et al (2008) Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron 58(1):89–103

    CAS  PubMed  Google Scholar 

  • Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300(4):549–571

    CAS  PubMed  Google Scholar 

  • Bar-Gad I, Morris G et al (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71(6):439–473

    PubMed  Google Scholar 

  • Baufreton J, Kirkham E et al (2009) Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. J Neurophysiol 102:532–545

    Google Scholar 

  • Baxter LR Jr, Phelps ME et al (1985) Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 42(5):441–447

    PubMed  Google Scholar 

  • Bayer HM, Lau B et al (2007) Statistics of midbrain dopamine neuron spike trains in the awake primate. J Neurophysiol 98(3):1428–1439

    PubMed  Google Scholar 

  • Bechara A, Tranel D et al (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269(5227):1115–1118

    CAS  PubMed  Google Scholar 

  • Beiser DG, Houk JC (1998) Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. J Neurophysiol 79(6):3168–3188

    CAS  PubMed  Google Scholar 

  • Bergman H, Kimura M et al (2006) Modulation of striatal circuits by dopamine and acetylcholine. In: Grillner S, Graybiel AM (eds) Microcircuits the interface between d neurons and global brain function. The MIT Press, Cambridge, Massachusetts, pp 149–162

    Google Scholar 

  • Bernard JF, Alden M et al (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329(2):201–229

    CAS  PubMed  Google Scholar 

  • Berthier ML, Kulisevsky J et al (1996) Poststroke bipolar affective disorder: clinical subtypes, concurrent movement disorders, and anatomical correlates. J Neuropsychiatry Clin Neurosci 8(2):160–167

    CAS  PubMed  Google Scholar 

  • Bhatia KP, Daniel SE et al (1993) Familial Parkinsonism with depression: a clinicopathological study. Ann Neurol 34(6):842–847

    CAS  PubMed  Google Scholar 

  • Bilder RM, Volavka J et al (2004) The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29(11):1943–1961

    CAS  PubMed  Google Scholar 

  • Bjursten LM, Norrsell K et al (1976) Behavioural repertory of cats without cerebral cortex from infancy. Exp Brain Res 25(2):115–130

    CAS  PubMed  Google Scholar 

  • Blackford JU, Buckholtz JW et al (2010) A unique role for the human amygdala in novelty detection. Neuroimage 50:1188–1193

    Google Scholar 

  • Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA 98(20):11818–11823

    CAS  PubMed  Google Scholar 

  • Blumberg HP, Leung HC et al (2003) A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 60(6):601–609

    PubMed  Google Scholar 

  • Bolam JP, Smith Y et al (1993) Convergence of synaptic terminals from the striatum and the globus pallidus onto single neurones in the substantia nigra and the entopeduncular nucleus. Prog Brain Res 99:73–88

    CAS  PubMed  Google Scholar 

  • Bolam JP, Hanley JJ et al (2000) Synaptic organisation of the basal ganglia. J Anat 196(Pt 4):527–542

    CAS  PubMed  Google Scholar 

  • Brainard MS, Doupe AJ (2000) Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404(6779):762–766

    CAS  PubMed  Google Scholar 

  • Breiter HC, Gollub RL et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19(3):591–611

    CAS  PubMed  Google Scholar 

  • Bronstein YL, Cummings J (2001) Neurochemistry of frontal-subcortical circuits. In: Lichter DG, Cummings J (eds) Frontal-subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York, pp 59–91

  • Brudzynski SM, Wu M et al (1993) Decreases in rat locomotor activity as a result of changes in synaptic transmission to neurons within the mesencephalic locomotor region. Can J Physiol Pharmacol 71(5–6):394–406

    CAS  PubMed  Google Scholar 

  • Butler T, Pan H et al (2007) Human fear-related motor neurocircuitry. Neuroscience 150(1):1–7

    CAS  PubMed  Google Scholar 

  • Cador M, Robbins TW et al (1989) Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience 30(1):77–86

    CAS  PubMed  Google Scholar 

  • Caine ED, Shoulson I (1983) Psychiatric syndromes in Huntington’s disease. Am J Psychiatry 140(6):728–733

    CAS  PubMed  Google Scholar 

  • Calabresi P, Maj R et al (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12(11):4224–4233

    CAS  PubMed  Google Scholar 

  • Calabresi P, Picconi B et al (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30(5):211–219

    CAS  PubMed  Google Scholar 

  • Caligiuri MP, Brown GG et al (2003) An fMRI study of affective state and medication on cortical and subcortical brain regions during motor performance in bipolar disorder. Psychiatry Res 123(3):171–182

    PubMed  Google Scholar 

  • Caligiuri MP, Brown GG et al (2006) Striatopallidal regulation of affect in bipolar disorder. J Affect Disord 91(2–3):235–242

    PubMed  Google Scholar 

  • Callaway CW, Hakan RL et al (1991) Distribution of amygdala input to the nucleus accumbens septi: an electrophysiological investigation. J Neural Transm Gen Sect 83(3):215–225

    CAS  PubMed  Google Scholar 

  • Calzavara R, Mailly P et al (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26(7):2005–2024

    PubMed  Google Scholar 

  • Canales JJ, Capper-Loup C et al (2002) Shifts in striatal responsivity evoked by chronic stimulation of dopamine and glutamate systems. Brain 125(Pt 10):2353–2363

    CAS  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA et al (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352

    PubMed  Google Scholar 

  • Carpenter MB, Strominger NL (1967) Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. Am J Anat 121(1):41–72

    CAS  PubMed  Google Scholar 

  • Casey BJ, Tottenham N et al (2002) Clinical, imaging, lesion, and genetic approaches toward a model of cognitive control. Dev Psychobiol 40(3):237–254

    CAS  PubMed  Google Scholar 

  • Cepeda C, Buchwald NA et al (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 90(20):9576–9580

    CAS  PubMed  Google Scholar 

  • Chaddock CA, Barker GJ et al (2009) White matter microstructural impairments and genetic liability to familial bipolar I disorder. Br J Psychiatry 194(6):527–534

    PubMed  Google Scholar 

  • Chang C, Crottaz-Herbette S et al (2007) Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage 34(3):1253–1269

    PubMed  Google Scholar 

  • Chatha BT, Bernard V et al (2000) Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience 101(4):1037–1051

    CAS  PubMed  Google Scholar 

  • Chen CH, Lennox B et al (2006) Explicit and implicit facial affect recognition in manic and depressed states of bipolar disorder: a functional magnetic resonance imaging study. Biol Psychiatry 59(1):31–39

    PubMed  Google Scholar 

  • Chepenik LG, Raffo M et al (2010) Functional connectivity between ventral prefrontal cortex and amygdala at low frequency in the resting state in bipolar disorder. Psychiatry Res 182(3):207–210

    PubMed  Google Scholar 

  • Chikama M, McFarland NR et al (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17(24):9686–9705

    CAS  PubMed  Google Scholar 

  • Cho YT, Fudge JL (2010) Heterogeneous dopamine populations project to specific subregions of the primate amygdala. Neuroscience 165(4):1501–1518

    CAS  PubMed  Google Scholar 

  • Christova PS, Lewis SM et al (2008) A voxel-by-voxel parametric fMRI study of motor mental rotation: hemispheric specialization and gender differences in neural processing efficiency. Exp Brain Res 189(1):79–90

    PubMed  Google Scholar 

  • Chudler EH, Sugiyama K et al (1995) Multisensory convergence and integration in the neostriatum and globus pallidus of the rat. Brain Res 674(1):33–45

    CAS  PubMed  Google Scholar 

  • Coizet V, Overton PG et al (2007) Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J Comp Neurol 500(6):1034–1049

    PubMed  Google Scholar 

  • Coizet V, Graham JH et al (2009) Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J Neurosci 29(17):5701–5709

    CAS  PubMed  Google Scholar 

  • Cromwell HC, Berridge KC (1993) Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Res 624(1–2):1–10

    CAS  PubMed  Google Scholar 

  • Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. I. Functional organization. Exp Brain Res 53(2):233–243

    CAS  PubMed  Google Scholar 

  • Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50(8):873–880

    CAS  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    CAS  PubMed  Google Scholar 

  • De Martino B, Camerer CF et al (2010) Amygdala damage eliminates monetary loss aversion. Proc Natl Acad Sci USA

  • de Olmos JS, Heimer L (1999) The concepts of the ventral striatopallidal system and extended amygdala. Ann N Y Acad Sci 877:1–32

    PubMed  Google Scholar 

  • Delgado MR, Nystrom LE et al (2000) Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 84(6):3072–3077

    CAS  PubMed  Google Scholar 

  • Delgado MR, Locke HM et al (2003) Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cogn Affect Behav Neurosci 3(1):27–38

    PubMed  Google Scholar 

  • Delgado MR, Stenger VA et al (2004) Motivation-dependent responses in the human caudate nucleus. Cereb Cortex 14(9):1022–1030

    CAS  PubMed  Google Scholar 

  • Delgado MR, Frank RH et al (2005) Perceptions of moral character modulate the neural systems of reward during the trust game. Nat Neurosci 8(11):1611–1618

    CAS  PubMed  Google Scholar 

  • Delgado MR, Schotter A et al (2008) Understanding overbidding: using the neural circuitry of reward to design economic auctions. Science 321(5897):1849–1852

    CAS  PubMed  Google Scholar 

  • DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34(3):414–427

    CAS  PubMed  Google Scholar 

  • DeLong MR, Crutcher MD et al (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53(2):530–543

    CAS  PubMed  Google Scholar 

  • Deniau JM, Chevalier G (1985) Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res 334(2):227–233

    CAS  PubMed  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431

    PubMed  Google Scholar 

  • Desseilles M, Schwartz S et al (2010) Depression alters “top-down” visual attention: a dynamic causal modeling comparison between depressed and healthy subjects. Neuroimage. doi:10.1016/j.neuroimage.2010.08.061 [Epub ahead of print]

  • Dichter GS, Felder JN et al (2009) The effects of psychotherapy on neural responses to rewards in major depression. Biol Psychiatry 66(9):886–897

    PubMed  Google Scholar 

  • Dowd EC, Barch DM (2009) Anhedonia and emotional experience in schizophrenia: neural and behavioral indicators. Biol Psychiatry 67:902–911

    Google Scholar 

  • Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15(2):161–167

    CAS  PubMed  Google Scholar 

  • Drevets WC, Gautier C et al (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49(2):81–96

    CAS  PubMed  Google Scholar 

  • Elliott R, Ogilvie A et al (2004) Abnormal ventral frontal response during performance of an affective go/no go task in patients with mania. Biol Psychiatry 55(12):1163–1170

    PubMed  Google Scholar 

  • Eugene F, Levesque J et al (2003) The impact of individual differences on the neural circuitry underlying sadness. Neuroimage 19(2 Pt 1):354–364

    PubMed  Google Scholar 

  • Fesenmeier JT, Kuzniecky R et al (1990) Akinetic mutism caused by bilateral anterior cerebral tuberculous obliterative arteritis. Neurology 40(6):1005–1006

    CAS  PubMed  Google Scholar 

  • Filatova EV, Orlov AA et al (2005) Neuron activity in the monkey striatum of identifies integration sequential actions into functional blocks. Neurosci Behav Physiol 35(9):943–949

    CAS  PubMed  Google Scholar 

  • Flaherty AW, Graybiel AM (1993) Output architecture of the primate putamen. J Neurosci 13(8):3222–3237

    CAS  PubMed  Google Scholar 

  • Flaherty AW, Graybiel AM (1994) Input-output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14(2):599–610

    CAS  PubMed  Google Scholar 

  • Flint AJ, Black SE et al (1993) Abnormal speech articulation, psychomotor retardation, and subcortical dysfunction in major depression. J Psychiatr Res 27(3):309–319

    CAS  PubMed  Google Scholar 

  • Folstein SE, Folstein MF (1983) Psychiatric features of Huntington’s disease: recent approaches and findings. Psychiatr Dev 1(2):193–205

    CAS  PubMed  Google Scholar 

  • Folstein S, Abbott MH et al (1983) The association of affective disorder with Huntington’s disease in a case series and in families. Psychol Med 13(3):537–542

    CAS  PubMed  Google Scholar 

  • Francois C, Yelnik J et al (1987) Golgi study of the primate substantia nigra. II. Spatial organization of dendritic arborizations in relation to the cytoarchitectonic boundaries and to the striatonigral bundle. J Comp Neurol 265(4):473–493

    CAS  PubMed  Google Scholar 

  • Frangou S (2005) The Maudsley bipolar disorder project. Epilepsia 46(Suppl 4):19–25

    PubMed  Google Scholar 

  • Frangou S, Kington J et al (2008) Examining ventral and dorsal prefrontal function in bipolar disorder: a functional magnetic resonance imaging study. Eur Psychiatry 23(4):300–308

    PubMed  Google Scholar 

  • Freund TF, Powell JF et al (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13(4):1189–1215

    CAS  PubMed  Google Scholar 

  • Freyer T, Kloppel S et al (2010) Frontostriatal activation in patients with obsessive–compulsive disorder before and after cognitive behavioral therapy. Psychol Med 1–10. doi:10.1017/S0033291710000309 [Epub ahead of print]

  • Fudge JL, Kunishio K et al (2002) Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 110(2):257–275

    CAS  PubMed  Google Scholar 

  • Fudge JL, Breitbart MA et al (2005) Insular and gustatory inputs to the caudal ventral striatum in primates. J Comp Neurol 490(2):101–118

    PubMed  Google Scholar 

  • Fuller TA, Russchen FT et al (1987) Sources of presumptive glutamergic/aspartergic afferents to the rat ventral striatopallidal region. J Comp Neurol 258(3):317–338

    CAS  PubMed  Google Scholar 

  • Gabbott PL, Warner TA et al (2006) Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 139(3):1039–1048

    CAS  PubMed  Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311(5985):461–464

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432

    CAS  PubMed  Google Scholar 

  • Ghashghaei HT, Barbas H (2001) Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience 103(3):593–614

    CAS  PubMed  Google Scholar 

  • Gluck-Vanlaer N, Fallet A et al (1996) Depression and calcinosis of the basal ganglia: apropos of a case. Encephale 22(2):127–131

    CAS  PubMed  Google Scholar 

  • Gottfried JA, O’Doherty J et al (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301(5636):1104–1107

    CAS  PubMed  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41(1):1–24

    CAS  PubMed  Google Scholar 

  • Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15(6):638–644

    CAS  PubMed  Google Scholar 

  • Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696):143–149

    CAS  PubMed  Google Scholar 

  • Grillner S, Cangiano L et al (2000) The intrinsic function of a motor system—from ion channels to networks and behavior. Brain Res 886(1–2):224–236

    CAS  PubMed  Google Scholar 

  • Grimm S, Ernst J et al (2008) Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline structures. Hum Brain Mapp 30:2617–2627

    Google Scholar 

  • Groenewegen HJ, Vermeulen-Van der Zee E et al (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23(1):103–120

    CAS  PubMed  Google Scholar 

  • Gurney K, Prescott TJ et al (2001) A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84(6):401–410

    CAS  PubMed  Google Scholar 

  • Gustafson N, Gireesh-Dharmaraj E et al (2006) A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro. J Neurophysiol 95(2):737–752

    PubMed  Google Scholar 

  • Habel U, Windischberger C et al (2007) Amygdala activation and facial expressions: explicit emotion discrimination versus implicit emotion processing. Neuropsychologia 45(10):2369–2377

    PubMed  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26(4):317–330

    PubMed  Google Scholar 

  • Haber SN, Calzavara R (2008) “The cortico-basal ganglia integrative network: The role of the thalamus.” Brain Res Bull

  • Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11(4):323–342

    CAS  PubMed  Google Scholar 

  • Haber SN, Groenewegen HJ et al (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J Comp Neurol 235(3):322–335

    CAS  PubMed  Google Scholar 

  • Haber SN, Fudge JL et al (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382

    CAS  PubMed  Google Scholar 

  • Haber SN, Kim KS et al (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26(32):8368–8376

    CAS  PubMed  Google Scholar 

  • Hadj-Bouziane F, Meunier M et al (2003) Conditional visuo-motor learning in primates: a key role for the basal ganglia. J Physiol Paris 97(4–6):567–579

    PubMed  Google Scholar 

  • Hamann SB, Ely TD et al (2002) Ecstasy and agony: activation of the human amygdala in positive and negative emotion. Psychol Sci 13(2):135–141

    PubMed  Google Scholar 

  • Hanley JJ, Bolam JP (1997) Synaptology of the nigrostriatal projection in relation to the compartmental organization of the neostriatum in the rat. Neuroscience 81(2):353–370

    CAS  PubMed  Google Scholar 

  • Harrison BJ, Soriano-Mas C et al (2009) Altered corticostriatal functional connectivity in obsessive–compulsive disorder. Arch Gen Psychiatry 66(11):1189–1200

    PubMed  Google Scholar 

  • Harvey PO, Armony J et al (2010) Functional neural substrates of self-reported physical anhedonia in non-clinical individuals and in patients with schizophrenia. J Psychiatr Res 44:707–716

    Google Scholar 

  • Hatfield T, Han JS et al (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 16(16):5256–5265

    CAS  PubMed  Google Scholar 

  • Hazrati LN, Parent A (1992a) Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L. Brain Res 569(2):336–340

    CAS  PubMed  Google Scholar 

  • Hazrati LN, Parent A (1992b) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592(1–2):213–227

    CAS  PubMed  Google Scholar 

  • Hernandez-Lopez S, Bargas J et al (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17(9):3334–3342

    CAS  PubMed  Google Scholar 

  • Hikosaka O, Sakamoto M et al (1989) Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61(4):780–798

    CAS  PubMed  Google Scholar 

  • Hikosaka O, Takikawa Y et al (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80(3):953–978

    CAS  PubMed  Google Scholar 

  • Hoebel BG, Avena NM et al (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7(6):617–627

    CAS  PubMed  Google Scholar 

  • Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259(5096):819–821

    CAS  PubMed  Google Scholar 

  • Horn DI, Yu C et al (2010) Glutamatergic and resting-state functional connectivity correlates of severity in major depression—the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:33

    PubMed  Google Scholar 

  • Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4):651–656

    CAS  PubMed  Google Scholar 

  • Houk JC (1997) On the role of the cerebellum and basal ganglia in cognitive signal processing. Prog Brain Res 114:543–552

    CAS  PubMed  Google Scholar 

  • Houk J (2001) Neurophysiology of frontal-subcortical loops. In: Lichter DG, Cummings J (eds) Frontal-subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York, pp 92–113

  • Houk JC (2005) Agents of the mind. Biol Cybern 92(6):427–437

    PubMed  Google Scholar 

  • Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 5(2):95–110

    CAS  PubMed  Google Scholar 

  • Houk JC, Bastianen C et al (2007) Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci 362(1485):1573–1583

    CAS  PubMed  Google Scholar 

  • Inase M, Tokuno H et al (1999) Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833(2):191–201

    CAS  PubMed  Google Scholar 

  • Jackson ME, Moghaddam B (2001) Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex. J Neurosci 21(2):676–681

    CAS  PubMed  Google Scholar 

  • Jackson MC, Wolf C et al (2008) Neural correlates of enhanced visual short-term memory for angry faces: an FMRI study. PLoS ONE 3(10):e3536

    PubMed  Google Scholar 

  • Jenkins IH, Brooks DJ et al (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14(6):3775–3790

    CAS  PubMed  Google Scholar 

  • Jog MS, Kubota Y et al (1999) Building neural representations of habits. Science 286(5445):1745–1749

    CAS  PubMed  Google Scholar 

  • Johnson LR, Aylward RL et al (1994) Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 61(4):851–865

    CAS  PubMed  Google Scholar 

  • Jones-Gotman M, Milner B (1977) Design fluency: the invention of nonsense drawings after focal cortical lesions. Neuropsychologia 15(4–5):653–674

    CAS  PubMed  Google Scholar 

  • Joshua M, Adler A et al (2008) Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci 28(45):11673–11684

    CAS  PubMed  Google Scholar 

  • Jueptner M, Frith CD et al (1997) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77(3):1325–1337

    CAS  PubMed  Google Scholar 

  • Juruena MF, Giampietro VP et al (2010) Amygdala activation to masked happy facial expressions. J Int Neuropsychol Soc 16(2):383–387

    PubMed  Google Scholar 

  • Kalmar JH, Wang F et al (2009) Relation between amygdala structure and function in adolescents with bipolar disorder. J Am Acad Child Adolesc Psychiatry 48(6):636–642

    PubMed  Google Scholar 

  • Kamishina H, Yurcisin GH et al (2008) Striatal projections from the rat lateral posterior thalamic nucleus. Brain Res 1204:24–39

    CAS  PubMed  Google Scholar 

  • Kasanetz F, Riquelme LA et al (2008) Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum. Proc Natl Acad Sci USA 105(23):8124–8129

    CAS  PubMed  Google Scholar 

  • Keedwell PA, Andrew C et al (2005) The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 58(11):843–853

    PubMed  Google Scholar 

  • Keedy SK, Rosen C et al (2009) An fMRI study of visual attention and sensorimotor function before and after antipsychotic treatment in first-episode schizophrenia. Psychiatry Res 172(1):16–23

    CAS  PubMed  Google Scholar 

  • Kelley AE, Domesick VB et al (1982) The amygdalostriatal projection in the rat–an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7(3):615–630

    CAS  PubMed  Google Scholar 

  • Kim R, Nakano K et al (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169(3):263–290

    CAS  PubMed  Google Scholar 

  • Kimura M, Rajkowski J et al (1984) Tonically discharging putamen neurons exhibit set-dependent responses. Proc Natl Acad Sci USA 81(15):4998–5001

    CAS  PubMed  Google Scholar 

  • Kincaid AE, Zheng T et al (1998) Connectivity and convergence of single corticostriatal axons. J Neurosci 18(12):4722–4731

    CAS  PubMed  Google Scholar 

  • Kita H (1992) Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat. Brain Res 589(1):84–90

    CAS  PubMed  Google Scholar 

  • Klitenick MA, Deutch AY et al (1992) Topography and functional role of dopaminergic projections from the ventral mesencephalic tegmentum to the ventral pallidum. Neuroscience 50(2):371–386

    CAS  PubMed  Google Scholar 

  • Knutson B, Westdorp A et al (2000) FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12(1):20–27

    CAS  PubMed  Google Scholar 

  • Knutson B, Fong GW et al (2001) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12(17):3683–3687

    CAS  PubMed  Google Scholar 

  • Knutson B, Fong GW et al (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 18(2):263–272

    PubMed  Google Scholar 

  • Koch K, Pauly K et al (2007) Gender differences in the cognitive control of emotion: an fMRI study. Neuropsychologia 45(12):2744–2754

    PubMed  Google Scholar 

  • Kolomiets BP, Deniau JM et al (2001) Segregation and convergence of information flow through the cortico-subthalamic pathways. J Neurosci 21(15):5764–5772

    CAS  PubMed  Google Scholar 

  • Kolomiets BP, Deniau JM et al (2003) Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata. Neuroscience 117(4):931–938

    CAS  PubMed  Google Scholar 

  • Koos T, Tepper JM (2002) Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci 22(2):529–535

    CAS  PubMed  Google Scholar 

  • Kraft E, Loichinger W et al (2009) Levodopa-induced striatal activation in Parkinson’s disease: a functional MRI study. Parkinsonism Relat Disord 15(8):558–563

    PubMed  Google Scholar 

  • Krettek JE, Price JL (1974) A direct input from the amygdala to the thalamus and the cerebral cortex. Brain Res 67(1):169–174

    CAS  PubMed  Google Scholar 

  • Kubasik-Juraniec J (1981) Hypothalamic afferents to the amygdala of the cat. Folia Morphol (Warsz) 40(3):229–244

    CAS  Google Scholar 

  • Kumar P, Waiter G et al (2008) Abnormal temporal difference reward-learning signals in major depression. Brain 131(Pt 8):2084–2093

    CAS  PubMed  Google Scholar 

  • Kumari V, Mitterschiffthaler MT et al (2003) Neural abnormalities during cognitive generation of affect in treatment-resistant depression. Biol Psychiatry 54(8):777–791

    PubMed  Google Scholar 

  • Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350(3):337–356

    CAS  PubMed  Google Scholar 

  • Kunzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88(2):195–209

    CAS  PubMed  Google Scholar 

  • Kuo JS, Carpenter MB (1973) Organization of pallidothalamic projections in the rhesus monkey. J Comp Neurol 151(3):201–236

    CAS  PubMed  Google Scholar 

  • Lagopoulos J, Malhi GS (2007) A functional magnetic resonance imaging study of emotional Stroop in euthymic bipolar disorder. Neuroreport 18(15):1583–1587

    PubMed  Google Scholar 

  • Lagopoulos J, Ivanovski B et al (2007) An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiatry Neurosci 32(3):174–184

    PubMed  Google Scholar 

  • Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51(3):533–545

    CAS  PubMed  Google Scholar 

  • Lauterbach EC, Spears TE et al (1994) Neuropsychiatric disorders, myoclonus, and dystonia in calcification of basal ganglia pathways. Biol Psychiatry 35(5):345–351

    CAS  PubMed  Google Scholar 

  • Lauterbach EC, Jackson JG et al (1997a) Clinical, motor, and biological correlates of depressive disorders after focal subcortical lesions. J Neuropsychiatry Clin Neurosci 9(2):259–266

    CAS  PubMed  Google Scholar 

  • Lauterbach EC, Jackson JG et al (1997b) Major depression after left posterior globus pallidus lesions. Neuropsychiatry Neuropsychol Behav Neurol 10(1):9–16

    CAS  PubMed  Google Scholar 

  • Lawrence AD (2000) Error correction and the basal ganglia: similar computations for action, cognition and emotion? Trends Cogn Sci 4(10):365–367

    PubMed  Google Scholar 

  • Lazaro L, Caldu X et al (2008) Cerebral activation in children and adolescents with obsessive–compulsive disorder before and after treatment: a functional MRI study. J Psychiatr Res 42(13):1051–1059

    PubMed  Google Scholar 

  • Le Jeune F, Peron J et al (2008) Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a PET study. Brain 131(Pt 6):1599–1608

    CAS  PubMed  Google Scholar 

  • Leblois A, Bodor AL et al (2009) Millisecond timescale disinhibition mediates fast information transmission through an avian basal ganglia loop. J Neurosci 29(49):15420–15433

    CAS  PubMed  Google Scholar 

  • Lecrubier Y (2006) Physical components of depression and psychomotor retardation. J Clin Psychiatry 67(Suppl 6):23–26

    PubMed  Google Scholar 

  • LeDoux JE (1992) Brain mechanisms of emotion and emotional learning. Curr Opin Neurobiol 2(2):191–197

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Ruggiero DA et al (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242(2):182–213

    CAS  PubMed  Google Scholar 

  • Lee IH, Seitz AR et al (2006) Activity of tonically active neurons in the monkey putamen during initiation and withholding of movement. J Neurophysiol 95(4):2391–2403

    PubMed  Google Scholar 

  • Lee JN, Hsu EW et al (2010) Reliability of fMRI motor tasks in structures of the corticostriatal circuitry: implications for future studies and circuit function. Neuroimage 49(2):1282–1288

    PubMed  Google Scholar 

  • Lehericy S, Benali H et al (2005) Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA 102(35):12566–12571

    CAS  PubMed  Google Scholar 

  • Lennox BR, Jacob R et al (2004) Behavioural and neurocognitive responses to sad facial affect are attenuated in patients with mania. Psychol Med 34(5):795–802

    CAS  PubMed  Google Scholar 

  • Leyton M, Boileau I et al (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27(6):1027–1035

    CAS  PubMed  Google Scholar 

  • Logue V, Durward M et al (1968) The quality of survival after rupture of an anterior cerebral aneurysm. Br J Psychiatry 114(507):137–160

    CAS  PubMed  Google Scholar 

  • Loo CK, Sachdev P et al (2008) A study using transcranial magnetic stimulation to investigate motor mechanisms in psychomotor retardation in depression. Int J Neuropsychopharmacol 11(7):935–946

    PubMed  Google Scholar 

  • Lorberbaum JP, Kose S et al (2004) Neural correlates of speech anticipatory anxiety in generalized social phobia. Neuroreport 15(18):2701–2705

    PubMed  Google Scholar 

  • Magill PJ, Pogosyan A et al (2006) Changes in functional connectivity within the rat striatopallidal axis during global brain activation in vivo. J Neurosci 26(23):6318–6329

    CAS  PubMed  Google Scholar 

  • Malhi GS, Lagopoulos J et al (2004a) Cognitive generation of affect in hypomania: an fMRI study. Bipolar Disord 6(4):271–285

    PubMed  Google Scholar 

  • Malhi GS, Lagopoulos J et al (2004b) Cognitive generation of affect in bipolar depression: an fMRI study. Eur J Neurosci 19(3):741–754

    PubMed  Google Scholar 

  • Malhi GS, Lagopoulos J et al (2005) An emotional Stroop functional MRI study of euthymic bipolar disorder. Bipolar Disord 7(Suppl 5):58–69

    PubMed  Google Scholar 

  • Malhi GS, Lagopoulos J et al (2007a) Reduced activation to implicit affect induction in euthymic bipolar patients: an fMRI study. J Affect Disord 97(1–3):109–122

    PubMed  Google Scholar 

  • Malhi GS, Lagopoulos J et al (2007b) Is a lack of disgust something to fear? A functional magnetic resonance imaging facial emotion recognition study in euthymic bipolar disorder patients. Bipolar Disord 9(4):345–357

    PubMed  Google Scholar 

  • Maltby N, Tolin DF et al (2005) Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive–compulsive disorder: an event-related fMRI study. Neuroimage 24(2):495–503

    PubMed  Google Scholar 

  • Marchand W, Lee J et al (2007a) An fMRI study of frontal-subcortical skeletomotor circuit and dorsolateral prefrontal cortex function using a paced motor activation paradigm. Brain Imaging Behav 1:58–67

    Google Scholar 

  • Marchand WR, Lee JN et al (2007b) A functional MRI study of a paced motor activation task to evaluate frontal-subcortical circuit function in bipolar depression. Psychiatry Res 155(3):221–230

    PubMed  Google Scholar 

  • Marchand WR, Lee JN et al (2007c) A preliminary longitudinal fMRI study of frontal-subcortical circuits in bipolar disorder using a paced motor activation paradigm. J Affect Disord 103(1–3):237–241

    PubMed  Google Scholar 

  • Marchand WR, Lee JN et al (2007d) Motor deactivation in the human cortex and basal ganglia. Neuroimage 38(3):538–548

    PubMed  Google Scholar 

  • Marchand WR, Lee JN et al (2009) An fMRI motor activation paradigm demonstrates abnormalities of putamen activation in females with panic disorder. J Affect Disord 116(1–2):121–125

    PubMed  Google Scholar 

  • Martinelli P, Giuliani S et al (1993) Familial idiopathic strio-pallido-dentate calcifications with late onset extrapyramidal syndrome. Mov Disord 8(2):220–222

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Minamimoto T et al (2001) Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85(2):960–976

    CAS  PubMed  Google Scholar 

  • McCabe C, Cowen PJ et al (2009) Neural representation of reward in recovered depressed patients. Psychopharmacology (Berl) 205(4):667–677

    CAS  Google Scholar 

  • McClure SM, Berns GS et al (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38(2):339–346

    CAS  PubMed  Google Scholar 

  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55(3):257–332

    CAS  PubMed  Google Scholar 

  • McDonald AJ (2003) Is there an amygdala and how far does it extend? An anatomical perspective. Ann N Y Acad Sci 985:1–21

    PubMed  Google Scholar 

  • McFarland NR, Haber SN (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20(10):3798–3813

    CAS  PubMed  Google Scholar 

  • McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22(18):8117–8132

    CAS  PubMed  Google Scholar 

  • McIntosh AM, Whalley HC et al (2008) Prefrontal function and activation in bipolar disorder and schizophrenia. Am J Psychiatry 165(3):378–384

    PubMed  Google Scholar 

  • Melia KR, Sananes CB et al (1992) Lesions of the central nucleus of the amygdala block the excitatory effects of septal ablation on the acoustic startle reflex. Physiol Behav 51(1):175–180

    CAS  PubMed  Google Scholar 

  • Mendez MF, Adams NL et al (1989) Neurobehavioral changes associated with caudate lesions. Neurology 39(3):349–354

    CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42(2):183–200

    CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (2002) Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb Cortex 12(9):926–935

    PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425

    CAS  PubMed  Google Scholar 

  • Mink JW, Thach WT (1987) Preferential relation of pallidal neurons to ballistic movements. Brain Res 417(2):393–398

    CAS  PubMed  Google Scholar 

  • Mitchell SJ, Richardson RT et al (1987) The primate globus pallidus: neuronal activity related to direction of movement. Exp Brain Res 68(3):491–505

    CAS  PubMed  Google Scholar 

  • Mogenson GJ, Yang CR (1991) The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv Exp Med Biol 295:267–290

    CAS  PubMed  Google Scholar 

  • Mogenson GJ, Jones DL et al (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2–3):69–97

    CAS  PubMed  Google Scholar 

  • Monakow KH, Akert K et al (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33(3–4):395–403

    CAS  PubMed  Google Scholar 

  • Monk CS, Telzer EH et al (2008) Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry 65(5):568–576

    PubMed  Google Scholar 

  • Monks PJ, Thompson JM et al (2004) A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord 6(6):550–564

    PubMed  Google Scholar 

  • Morris G, Arkadir D et al (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43(1):133–143

    CAS  PubMed  Google Scholar 

  • Moses-Kolko EL, Perlman SB et al (2010) Abnormally reduced dorsomedial prefrontal cortical activity and effective connectivity with amygdala in response to negative emotional faces in postpartum depression. Am J Psychiatry. doi:10.1176/appi.ajp.2010.09081235 [Epub ahead of print]

  • Naismith SL, Hickie IB et al (2006) Impaired implicit sequence learning in depression: a probe for frontostriatal dysfunction? Psychol Med 36(3):313–323

    PubMed  Google Scholar 

  • Nakao T, Nakagawa A et al (2005) A functional MRI comparison of patients with obsessive–compulsive disorder and normal controls during a Chinese character Stroop task. Psychiatry Res 139(2):101–114

    PubMed  Google Scholar 

  • Nambu A (2008) Seven problems on the basal ganglia. Curr Opin Neurobiol 18(6):595–604

    CAS  PubMed  Google Scholar 

  • Nambu A, Tokuno H et al (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84(1):289–300

    CAS  PubMed  Google Scholar 

  • Narita H, Odawara T et al (2004) Psychomotor retardation correlates with frontal hypoperfusion and the modified Stroop test in patients under 60-years-old with major depression. Psychiatry Clin Neurosci 58(4):389–395

    PubMed  Google Scholar 

  • Narumoto J, Matsushima N et al (2005) Neurobehavioral changes associated with bilateral caudate nucleus infarctions. Psychiatry Clin Neurosci 59(1):109–110

    PubMed  Google Scholar 

  • Nauta WJ, Smith GP et al (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3(4–5):385–401

    CAS  PubMed  Google Scholar 

  • Navari S, Dazzan P (2009) Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med 11:1763–1777

    Google Scholar 

  • Neugebauer V, Li W (2002) Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input. J Neurophysiol 87(1):103–112

    PubMed  Google Scholar 

  • Nieuwenhuis S, Slagter HA et al (2005) Knowing good from bad: differential activation of human cortical areas by positive and negative outcomes. Eur J Neurosci 21(11):3161–3168

    PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1995) “Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input.”. J Neurosci 15(5 Pt 1):3622–3639

    PubMed  Google Scholar 

  • Oertel WH, Mugnaini E (1984) Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci Lett 47(3):233–238

    CAS  PubMed  Google Scholar 

  • Ohrmann P, Pedersen A et al (2010) Effect of gender on processing threat-related stimuli in patients with panic disorder: sex does matter. Depress Anxiety. doi:10.1002/da.20721 [Epub ahead of print]

  • Olver JS, O’Keefe G et al (2009) Dopamine D1 receptor binding in the striatum of patients with obsessive–compulsive disorder. J Affect Disord 114(1–3):321–326

    CAS  PubMed  Google Scholar 

  • Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol 366(4):580–599

    CAS  PubMed  Google Scholar 

  • Orieux G, Francois C et al (2000) Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease. Neuroscience 97(1):79–88

    CAS  PubMed  Google Scholar 

  • Orieux G, Francois C et al (2002) Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the rat. J Neurosci 22(19):8762–8770

    CAS  PubMed  Google Scholar 

  • Oviedo A, Delgado A et al (2008) Differential inhibition of globus pallidus neurons by electrical or chemical stimulation of the striatum. Neurosci Res 62(4):240–245

    CAS  PubMed  Google Scholar 

  • Pagnoni G, Zink CF et al (2002) Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 5(2):97–98

    CAS  PubMed  Google Scholar 

  • Panagis G, Miliaressis E et al (1995) Ventral pallidum self-stimulation: a moveable electrode mapping study. Behav Brain Res 68(2):165–172

    CAS  PubMed  Google Scholar 

  • Parashos IA, Oxley SL et al (1993) In vivo quantitation of basal ganglia and thalamic degenerative changes in two temporal lobectomy patients with affective disorder. J Neuropsychiatry Clin Neurosci 5(3):337–341

    CAS  PubMed  Google Scholar 

  • Parent A, Hazrati LN (1993) Anatomical aspects of information processing in primate basal ganglia. Trends Neurosci 16(3):111–116

    CAS  PubMed  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20(1):91–127

    CAS  PubMed  Google Scholar 

  • Parent M, Levesque M et al (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439(2):162–175

    CAS  PubMed  Google Scholar 

  • Parr-Brownlie LC, Poloskey SL et al (2009) Parafascicular thalamic nucleus activity in a rat model of Parkinson’s disease. Exp Neurol 217(2):269–281

    PubMed  Google Scholar 

  • Parush N, Arkadir D et al (2008) Encoding by response duration in the basal ganglia. J Neurophysiol 100(6):3244–3252

    PubMed  Google Scholar 

  • Paulsen JS, Ready RE et al (2001) Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry 71(3):310–314

    CAS  PubMed  Google Scholar 

  • Paulus MP, Feinstein JS et al (2005) Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch Gen Psychiatry 62(3):282–288

    CAS  PubMed  Google Scholar 

  • Percheron G, Yelnik J et al (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227(2):214–227

    CAS  PubMed  Google Scholar 

  • Person AL, Perkel DJ (2005) Unitary IPSPs drive precise thalamic spiking in a circuit required for learning. Neuron 46(1):129–140

    CAS  PubMed  Google Scholar 

  • Peterson BS, Potenza MN et al (2009) An fMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry 166(11):1286–1294

    PubMed  Google Scholar 

  • Phelps EA (2006) Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 57:27–53

    PubMed  Google Scholar 

  • Phelps EA, O’Connor KJ et al (2001) Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 4(4):437–441

    CAS  PubMed  Google Scholar 

  • Plenz D, Kitai ST (1998) Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J Neurosci 18(1):266–283

    CAS  PubMed  Google Scholar 

  • Polgar P, Farkas M et al (2007) Learning cognitive skills in depression: the effect of context-change. Psychiatr Hung 22(4):271–275

    PubMed  Google Scholar 

  • Porrino LJ, Crane AM et al (1981) Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol 198(1):121–136

    CAS  PubMed  Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1(11):1242–1259

    CAS  PubMed  Google Scholar 

  • Prodoehl J, Yu H et al (2008) Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. J Neurophysiol 99(6):3042–3051

    PubMed  Google Scholar 

  • Pujol J, Lopez-Sola M et al (2009) Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI. PLoS ONE 4(4):e5224

    PubMed  Google Scholar 

  • Qiu MH, Vetrivelan R et al (2010) Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci 31(3):499–507

    PubMed  Google Scholar 

  • Ramanathan S, Hanley JJ et al (2002) Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 22(18):8158–8169

    CAS  PubMed  Google Scholar 

  • Ravel S, Sardo P et al (2001) Reward unpredictability inside and outside of a task context as a determinant of the responses of tonically active neurons in the monkey striatum. J Neurosci 21(15):5730–5739

    CAS  PubMed  Google Scholar 

  • Ravel S, Legallet E et al (2003) Responses of tonically active neurons in the monkey striatum discriminate between motivationally opposing stimuli. J Neurosci 23(24):8489–8497

    CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ et al (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4):1009–1023

    CAS  PubMed  Google Scholar 

  • Reep RL, Cheatwood JL et al (2003) The associative striatum: organization of cortical projections to the dorsocentral striatum in rats. J Comp Neurol 467(3):271–292

    PubMed  Google Scholar 

  • Renaud LP, Hopkins DA (1977) Amygdala afferents from the mediobasal hypothalamus: an electrophysiological and neuroanatomical study in the rat. Brain Res 121(2):201–213

    CAS  PubMed  Google Scholar 

  • Reynolds JN, Wickens JR (2004) The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues. Brain Res 1011(1):115–128

    CAS  PubMed  Google Scholar 

  • Rilling JK, Sanfey AG et al (2004) Opposing BOLD responses to reciprocated and unreciprocated altruism in putative reward pathways. Neuroreport 15(16):2539–2543

    PubMed  Google Scholar 

  • Rolls ET, Thorpe SJ et al (1984) Responses of striatal neurons in the behaving monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness. Neuroscience 12(4):1201–1212

    CAS  PubMed  Google Scholar 

  • Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198(4314):315–317

    CAS  PubMed  Google Scholar 

  • Rotge JY, Langbour N et al (2009) Gray matter alterations in obsessive–compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology 35:686–691

    Google Scholar 

  • Rubia K, Halari R et al (2009) Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 57:640–652

    Google Scholar 

  • Ryan LJ, Clark KB (1991) The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats. Exp Brain Res 86(3):641–651

    CAS  PubMed  Google Scholar 

  • Ryan LJ, Sanders DJ (1994) Neostriatal modulation of motor cortex excitability. Brain Res 651(1–2):241–251

    CAS  PubMed  Google Scholar 

  • Sananes CB, Davis M (1992) N-methyl-d-aspartate lesions of the lateral and basolateral nuclei of the amygdala block fear-potentiated startle and shock sensitization of startle. Behav Neurosci 106(1):72–80

    CAS  PubMed  Google Scholar 

  • Sareen J, Campbell DW et al (2007) Striatal function in generalized social phobia: a functional magnetic resonance imaging study. Biol Psychiatry 61(3):396–404

    PubMed  Google Scholar 

  • Sato F, Lavallee P et al (2000) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417(1):17–31

    CAS  PubMed  Google Scholar 

  • Scherk H, Kemmer C et al (2008) No change to grey and white matter volumes in bipolar I disorder patients. Eur Arch Psychiatry Clin Neurosci 258(6):345–349

    PubMed  Google Scholar 

  • Schienle A, Schafer A et al (2005) Gender differences in the processing of disgust- and fear-inducing pictures: an fMRI study. Neuroreport 16(3):277–280

    PubMed  Google Scholar 

  • Schlagenhauf F, Wustenberg T et al (2008) Switching schizophrenia patients from typical neuroleptics to olanzapine: effects on BOLD response during attention and working memory. Eur Neuropsychopharmacol 18(8):589–599

    CAS  PubMed  Google Scholar 

  • Schneider F, Grodd W et al (1997) Functional MRI reveals left amygdala activation during emotion. Psychiatry Res 76(2–3):75–82

    CAS  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    CAS  PubMed  Google Scholar 

  • Schulz JM, Redgrave P et al (2009) Short-latency activation of striatal spiny neurons via subcortical visual pathways. J Neurosci 29(19):6336–6347

    CAS  PubMed  Google Scholar 

  • Schutze I, Knuepfer MM et al (1987) Sensory input to single neurons in the amygdala of the cat. Exp Neurol 97(3):499–515

    CAS  PubMed  Google Scholar 

  • Schwyn RC, Fox CA (1974) The primate substantia nigra: a Golgi and electron microscopic study. J Hirnforsch 15(1):95–126

    CAS  PubMed  Google Scholar 

  • Seidler RD, Noll DC et al (2006) Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res 175(3):544–555

    CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5(3):776–794

    CAS  PubMed  Google Scholar 

  • Senior C (2003) Beauty in the brain of the beholder. Neuron 38(4):525–528

    CAS  PubMed  Google Scholar 

  • Shen W, Flajolet M et al (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321(5890):848–851

    CAS  PubMed  Google Scholar 

  • Shimo Y, Wichmann T (2009) Neuronal activity in the subthalamic nucleus modulates the release of dopamine in the monkey striatum. Eur J Neurosci 29(1):104–113

    PubMed  Google Scholar 

  • Shimura T, Imaoka H et al (2006) Neurochemical modulation of ingestive behavior in the ventral pallidum. Eur J Neurosci 23(6):1596–1604

    PubMed  Google Scholar 

  • Shirao N, Okamoto Y et al (2005) Gender differences in brain activity generated by unpleasant word stimuli concerning body image: an fMRI study. Br J Psychiatry 186:48–53

    PubMed  Google Scholar 

  • Sidibe M, Bevan MD et al (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382(3):323–347

    CAS  PubMed  Google Scholar 

  • Siegle GJ, Thompson W et al (2007) Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry 61(2):198–209

    PubMed  Google Scholar 

  • Silverman ME, Loudon H et al (2007) Neural dysfunction in postpartum depression: an fMRI pilot study. CNS Spectr 12(11):853–862

    PubMed  Google Scholar 

  • Slaughter JR, Martens MP et al (2001) Depression and Huntington’s disease: prevalence, clinical manifestations, etiology, and treatment. CNS Spectr 6(4):306–326

    CAS  PubMed  Google Scholar 

  • Small DM, Zatorre RJ et al (2001) Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124(Pt 9):1720–1733

    CAS  PubMed  Google Scholar 

  • Small DM, Jones-Gotman M et al (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19(4):1709–1715

    PubMed  Google Scholar 

  • Smith KS, Berridge KC (2005) The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. J Neurosci 25(38):8637–8649

    CAS  PubMed  Google Scholar 

  • Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27(7):1594–1605

    CAS  PubMed  Google Scholar 

  • Smith Y, Bennett BD et al (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344(1):1–19

    CAS  PubMed  Google Scholar 

  • Smith MA, Brandt J et al (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403(6769):544–549

    CAS  PubMed  Google Scholar 

  • Smith KS, Tindell AJ et al (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196(2):155–167

    PubMed  Google Scholar 

  • Stanfield AC, Moorhead TW et al (2009) Structural abnormalities of ventrolateral and orbitofrontal cortex in patients with familial bipolar disorder. Bipolar Disord 11(2):135–144

    PubMed  Google Scholar 

  • Starkstein SE, Mayberg HS et al (1990) Mania after brain injury: neuroradiological and metabolic findings. Ann Neurol 27(6):652–659

    CAS  PubMed  Google Scholar 

  • Stefani A, De Murtas M et al (1995) Electrophysiology of dopamine D-1 receptors in the basal ganglia: old facts and new perspectives. Prog Neuropsychopharmacol Biol Psychiatry 19(5):779–793

    CAS  PubMed  Google Scholar 

  • Stein MB, Simmons AN et al (2007) Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 164(2):318–327

    PubMed  Google Scholar 

  • Stice E, Spoor S et al (2008a) Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322(5900):449–452

    CAS  PubMed  Google Scholar 

  • Stice E, Spoor S et al (2008b) Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol 117(4):924–935

    PubMed  Google Scholar 

  • Strakowski SM, Adler CM et al (2004) A preliminary FMRI study of sustained attention in euthymic, unmedicated bipolar disorder. Neuropsychopharmacology 29(9):1734–1740

    PubMed  Google Scholar 

  • Strakowski SM, Adler CM et al (2005) Abnormal FMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. Am J Psychiatry 162(9):1697–1705

    PubMed  Google Scholar 

  • Surmeier DJ (2006) Microcircuitsin the striatum: cell types, intrinsic membrane properties, and neuromodulation. In: Gillner S, Graybiel AM (eds) Microcircuits: the interface between neurons and global brain function. The MIT Press, Cambridge, Massachusetts, pp 105–126

    Google Scholar 

  • Takada M, Tokuno H et al (1998) Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res 120(1):114–128

    CAS  PubMed  Google Scholar 

  • Takada M, Tokuno H et al (2001) Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 14(10):1633–1650

    CAS  PubMed  Google Scholar 

  • Takahashi H, Kato M et al (2009) When your gain is my pain and your pain is my gain: neural correlates of envy and schadenfreude. Science 323(5916):937–939

    CAS  PubMed  Google Scholar 

  • Takakusaki K, Habaguchi T et al (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119(1):293–308

    CAS  PubMed  Google Scholar 

  • Tan CO, Bullock D (2008) A dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons. J Neurophysiol 100(4):2409–2421

    CAS  PubMed  Google Scholar 

  • Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53(2):647–654

    PubMed  Google Scholar 

  • Tepper JM, Plenz D (2006) Microcircuits in the striatum: striatal cell types and their interaction. In: Gillner S, Graybiel AM (eds) Microcircuits: the interface between neurons and global brain function. The MIT Press, Massachusetts, Cambridge, pp 127–148

    Google Scholar 

  • Tindell AJ, Smith KS et al (2006) Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol 96(5):2399–2409

    PubMed  Google Scholar 

  • Toan DL, Schultz W (1985) Responses of rat pallidum cells to cortex stimulation and effects of altered dopaminergic activity. Neuroscience 15(3):683–694

    CAS  PubMed  Google Scholar 

  • Tokuno H, Inase M et al (1999) Corticostriatal projections from distal and proximal forelimb representations of the monkey primary motor cortex. Neurosci Lett 269(1):33–36

    CAS  PubMed  Google Scholar 

  • Tricomi E, Delgado MR et al (2006) Performance feedback drives caudate activation in a phonological learning task. J Cogn Neurosci 18(6):1029–1043

    PubMed  Google Scholar 

  • Tsai HC, Zhang F et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084

    CAS  PubMed  Google Scholar 

  • Turecki G, de Mari J et al (1993) Bipolar disorder following a left basal-ganglia stroke. Br J Psychiatry 163:690

    CAS  PubMed  Google Scholar 

  • Turner MS, Lavin A et al (2001) Regulation of limbic information outflow by the subthalamic nucleus: excitatory amino acid projections to the ventral pallidum. J Neurosci 21(8):2820–2832

    CAS  PubMed  Google Scholar 

  • Ubeda-Banon I, Novejarque A et al (2007) Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neurosci 8:103

    PubMed  Google Scholar 

  • van der Wee NJ, van Veen JF et al (2008) Increased serotonin and dopamine transporter binding in psychotropic medication-naive patients with generalized social anxiety disorder shown by 123I-beta-(4-iodophenyl)-tropane SPECT. J Nucl Med 49(5):757–763

    PubMed  Google Scholar 

  • Volkow ND, Wang GJ et al (2002) “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44(3):175–180

    CAS  PubMed  Google Scholar 

  • Voon V, Saint-Cyr J et al (2005) Psychiatric symptoms in patients with Parkinson disease presenting for deep brain stimulation surgery. J Neurosurg 103(2):246–251

    PubMed  Google Scholar 

  • Wang L, Krishnan KR et al (2008) Depressive state- and disease-related alterations in neural responses to affective and executive challenges in geriatric depression. Am J Psychiatry 165(7):863–871

    PubMed  Google Scholar 

  • Weintraub D, Stern MB (2005) Psychiatric complications in Parkinson disease. Am J Geriatr Psychiatry 13(10):844–851

    PubMed  Google Scholar 

  • West AG, Grace AA (2001) The role of frontal-subcortical circuits in the pathophysiology of schizophrenia. In: Lichter DG, Cummings JL (eds) Frontal-subcortical circuits in psychiatric and neurological disorders. The Guilford Press, New York, pp 372–400

    Google Scholar 

  • Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16(7):2397–2410

    CAS  PubMed  Google Scholar 

  • Wilson CJ, Chang HT et al (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10(2):508–519

    CAS  PubMed  Google Scholar 

  • Woolley J, Heyman I et al (2008) Brain activation in paediatric obsessive compulsive disorder during tasks of inhibitory control. Br J Psychiatry 192(1):25–31

    PubMed  Google Scholar 

  • Yang TT, Simmons AN et al (2007) Increased amygdala activation is related to heart rate during emotion processing in adolescent subjects. Neurosci Lett 428(2–3):109–114

    CAS  PubMed  Google Scholar 

  • Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139(1):43–63

    CAS  PubMed  Google Scholar 

  • Yoshida A, Tanaka M (2009a) Enhanced modulation of neuronal activity during antisaccades in the primate globus pallidus. Cereb Cortex 19(1):206–217

    PubMed  Google Scholar 

  • Yoshida A, Tanaka M (2009b) Neuronal activity in the primate globus pallidus during smooth pursuit eye movements. Neuroreport 20(2):121–125

    PubMed  Google Scholar 

  • Yoshimura S, Okamoto Y et al (2010) Rostral anterior cingulate cortex activity mediates the relationship between the depressive symptoms and the medial prefrontal cortex activity. J Affect Disord 122(1–2):76–85

    PubMed  Google Scholar 

  • Zaborszky L, Gaykema RP et al (1997) Cortical input to the basal forebrain. Neuroscience 79(4):1051–1078

    CAS  PubMed  Google Scholar 

  • Zheng T, Wilson CJ (2002) Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol 87(2):1007–1017

    CAS  PubMed  Google Scholar 

  • Zhou Y, Yu C et al (2010) Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord 121(3):220–230

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Department of Veterans Affairs Career Development Award. Additional support was provided by the resources and the use of facilities at the VA Salt Lake City Health Care System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Marchand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, W.R. Cortico-basal ganglia circuitry: a review of key research and implications for functional connectivity studies of mood and anxiety disorders. Brain Struct Funct 215, 73–96 (2010). https://doi.org/10.1007/s00429-010-0280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-010-0280-y

Keywords

Navigation