Skip to main content

Advertisement

Log in

Detection of βig-H3, a TGFβ induced gene, during cardiac development and its complementary pattern with periostin

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Regulation of normal cardiac development involves numerous transcription factors, cytoskeletal proteins, signaling molecules, and extracellular matrix proteins. These key molecular components act in concert to induce morphological changes essential for the proper development of a functional four-chambered heart. Growth factors such as BMPs and TGFβ’s play a role in migration, proliferation and differentiation during cardiac development and are important regulators of the extracellular matrix (ECM). Genes responsive to these morphogens are likely to play an equally significant role during cardiac development. Therefore, we sought to clone the chicken TGFβ induced gene βig-H3 and evaluate its spatio-temporal expression during heart morphogenesis. Our studies show by Northern analysis, whole mount and section in situ hybridization experiments that βig-H3 is expressed primarily in the mesenchyme of the atrioventricular and outflow tract cushions and later in the right and left atrioventricular valve leaflets and supporting valve structures. The mRNA expression domains of βig-H3 show a complementary pattern compared to that of its highly homologous relative, periostin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akiyoshi S, Ishii M, Nemoto N, Kawabata M, Aburatani H, Miyazono K (2001) Targets of transcriptional regulation by transforming growth factor-beta: expression profile analysis using oligonucleotide arrays. Jpn J Cancer Res 92:257–268

    PubMed  CAS  Google Scholar 

  • Bae JS, Lee SH, Kim JE, Choi JY, Park RW, Yong Park J, Park HS, Sohn YS, Lee DS, Bae Lee E, Kim IS (2002) Betaig-h3 supports keratinocyte adhesion, migration, and proliferation through alpha3beta1 integrin. Biochem Biophys Res Commun 294:940–948

    Article  PubMed  CAS  Google Scholar 

  • Billings PC, Whitbeck JC, Adams CS, Abrams WR, Cohen AJ, Engelsberg BN, Howard PS, Rosenbloom J (2002) The transforming growth factor-beta-inducible matrix protein (beta)ig-h3 interacts with fibronectin. J Biol Chem 277:28003–28009

    Article  PubMed  CAS  Google Scholar 

  • Cayre R, Valencia-Mayoral P, Coffe-Ramirez V, Sanchez-Gomez C, Angelini P, de la Cruz MV (1993) The right atrioventricular valvular apparatus in the chick heart. Acta Anat (Basel) 148:27–33

    CAS  Google Scholar 

  • Doi T, Ohno S, Tanimoto K, Honda K, Tanaka N, Ohno-Nakahara M, Yoneno K, Suzuki A, Nakatani Y, Ueki M, Tanne K (2003) Mechanical stimuli enhances the expression of RGD-CAP/betaig-h3 in the periodontal ligament. Arch Oral Biol 48:573–579

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg L, Markwald R (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6

    PubMed  CAS  Google Scholar 

  • Ferguson JW, Thoma BS, Mikesh MF, Kramer RH, Bennett KL, Purchio A, Bellard BJ, LeBaron RG (2003b) The extracellular matrix protein betaIG-H3 is expressed at myotendinous junctions and supports muscle cell adhesion. Cell Tissue Res 313:93–105

    Article  PubMed  CAS  Google Scholar 

  • Ferguson JW, Mikesh MF, Wheeler EF, LeBaron RG (2003a) Developmental expression patterns of Beta-ig (betaIG-H3) and its function as a cell adhesion protein. Mech Dev 120:851–864

    Article  PubMed  CAS  Google Scholar 

  • Gibson MA, Kumaratilake JS, Cleary EG (1989) The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J Biol Chem 264:4590–4598

    PubMed  CAS  Google Scholar 

  • Ha SW, Kim HJ, Bae JS, Jeong GH, Chung SC, Kim JG, Park SH, Kim YL, Kam S, Kim IS, Kim BW (2004) Elevation of urinary betaig-h3, transforming growth factor-beta-induced protein in patients with type 2 diabetes and nephropathy. Diabetes Res Clin Pract 65:167–173

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. 1951 [classical article]. Dev Dyn 195:231–272

    Google Scholar 

  • Hanssen E, Reinboth B, Gibson MA (2003) Covalent and non-covalent interactions of betaig-h3 with collagen VI. Beta ig-h3 is covalently attached to the amino-terminal region of collagen VI in tissue microfibrils. J Biol Chem 278:24334–24341

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Noshiro M, Ohno S, Kawamoto T, Satakeda H, Akagawa Y, Nakashima K, Okimura A, Ishida H, Okamoto T, Pan H, Shen M, Yan W, Kato Y (1997) Characterization of a cartilage-derived 66-kDa protein (RGD-CAP/beta ig-h3) that binds to collagen. Biochim Biophys Acta 1355:303–314

    Article  PubMed  CAS  Google Scholar 

  • Hirate Y, Okamoto H, Yamasu K (2003) Structure of the zebrafish fasciclin I-related extracellular matrix protein (betaig-h3) and its characteristic expression during embryogenesis. Gene Expr Patterns 3:331–336

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Irving C, Nieto MA, DasGupta R, Charnay P, Wilkinson DG (1996) Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation. Dev Biol 173:26–38

    Article  PubMed  CAS  Google Scholar 

  • Jamali M, Karamboulas C, Rogerson PJ, Skerjanc IS (2001) BMP signaling regulates Nkx2–5 activity during cardiomyogenesis. FEBS Lett 509:126–130

    Article  PubMed  CAS  Google Scholar 

  • Jeong HW, Kim IS (2004) TGF-beta1 enhances betaig-h3-mediated keratinocyte cell migration through the alpha3beta1 integrin and PI3K. J Cell Biochem 92:770–780

    Article  PubMed  CAS  Google Scholar 

  • Kaartinen V, Dudas M, Nagy A, Sridurongrit S, Lu MM, Epstein JA (2004) Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development 131:3481–3490

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto T, Noshiro M, Shen M, Nakamasu K, Hashimoto K, Kawashima-Ohya Y, Gotoh O, Kato Y (1998) Structural and phylogenetic analyses of RGD-CAP/beta ig-h3, a fasciclin-like adhesion protein expressed in chick chondrocytes. Biochim Biophys Acta 1395:288–292

    PubMed  CAS  Google Scholar 

  • Kern CB, Hoffman S, Moreno R, Damon BJ, Norris RA, Krug E, Markwald RR, Mjaatvedt CH (2005) Immunolocalization of chick periostin protein in the developing heart. Anat Rec A 284(1):415–423

    Article  CAS  Google Scholar 

  • Kim JE, Kim EH, Han EH, Park RW, Park IH, Jun SH, Kim JC, Young MF, Kim IS (2000a) A TGF-beta-inducible cell adhesion molecule, betaig-h3, is downregulated in melorheostosis and involved in osteogenesis. J Cell Biochem 77:169–178

    Article  PubMed  CAS  Google Scholar 

  • Kim JE, Kim SJ, Lee BH, Park RW, Kim KS, Kim IS (2000b) Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-beta-induced gene, betaig-h3. J Biol Chem 275:30907–30915

    Article  PubMed  CAS  Google Scholar 

  • Kim JE, Kim SJ, Jeong HW, Lee BH, Choi JY, Park RW, Park JY, Kim IS (2003) RGD peptides released from beta ig-h3, a TGF-beta-induced cell-adhesive molecule, mediate apoptosis. Oncogene 22:2045–2053

    Article  PubMed  CAS  Google Scholar 

  • Korvatska E, Munier FL, Chaubert P, Wang MX, Mashima Y, Yamada M, Uffer S, Zografos L, Schorderet DF (1999) On the role of kerato-epithelin in the pathogenesis of 5q31-linked corneal dystrophies. Invest Ophthalmol Vis Sci 40:2213–2219

    PubMed  CAS  Google Scholar 

  • Kruzynska-Frejtag A, Machnicki M, Rogers R, Markwald RR, Conway SJ (2001) Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. Mech Dev 103:183–188

    Article  PubMed  CAS  Google Scholar 

  • de La Cruz MV, Markwald RR (1998) Living Morphogenesis of the Heart. Birkhauser/Springer, Boston/Berlin Heidelberg NewYork, p 382

    Google Scholar 

  • de Lange FJ, Moorman AF, Anderson RH, Manner J, Soufan AT, de Gier-de Vries C, Schneider MD, Webb S, van den Hoff MJ, Christoffels VM (2004) Lineage and morphogenetic analysis of the cardiac valves. Circ Res 95:645–654

    Article  PubMed  CAS  Google Scholar 

  • LeBaron RG, Bezverkov KI, Zimber MP, Pavelec R, Skonier J, Purchio AF (1995) Beta IG-H3, a novel secretory protein inducible by transforming growth factor-beta, is present in normal skin and promotes the adhesion and spreading of dermal fibroblasts in vitro. J Invest Dermatol 104:844–849

    Article  PubMed  CAS  Google Scholar 

  • Lincoln J, Alfieri CM, Yutzey KE (2004) Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev Dyn 230:239–250

    Article  PubMed  CAS  Google Scholar 

  • Markwald R, Eisenberg C, Eisenberg L, Trusk T, Sugi Y (1996) Epithelial-mesenchymal transformations in early avian heart development. Acta Anat 156:173–186

    PubMed  CAS  Google Scholar 

  • Moorman AF, Houweling AC, de Boer PA, Christoffels VM (2001) Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J Histochem Cytochem 49:1–8

    PubMed  CAS  Google Scholar 

  • Morand S, Buchillier V, Maurer F, Bonny C, Arsenijevic Y, Munier FL, Schorderet DF (2003) Induction of apoptosis in human corneal and HeLa cells by mutated BIGH3. Invest Ophthalmol Vis Sci 44:2973–2979

    Article  PubMed  Google Scholar 

  • Munier FL, Korvatska E, Djemai A, Le Paslier D, Zografos L, Pescia G, Schorderet DF (1997) Kerato-epithelin mutations in four 5q31-linked corneal dystrophies. Nat Genet 15:247–251

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y, Krug EL, Markwald RR (1994a) Extracellular regulation of TGF beta expression in epithelial cells transforming to mesenchyme during chick heart morphogenesis. Dev Biol 165:615–626

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y, Krug EL, Markwald RR (1994b) Myocardial regulation of transforming growth factor-beta expression by outflow tract endothelium in the early embryonic chick heart. Dev Biol 165:615–626

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y, Yamagishi T, Hokari S, Nakamura H (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 258:119–127

    Article  PubMed  CAS  Google Scholar 

  • Nam JO, Kim JE, Jeong HW, Lee SJ, Lee BH, Choi JY, Park RW, Park JY, Kim IS (2003) Identification of the alphavbeta3 integrin-interacting motif of betaig-h3 and its anti-angiogenic effect. J Biol Chem 278:25902–25909

    Article  PubMed  CAS  Google Scholar 

  • Norris RA, Kern CB, Wessels A, Moralez EI, Markwald RR, Mjaatvedt CH (2004) Identification and detection of the periostin gene in cardiac development. Anat Rec A Discov Mol Cell Evol Biol 281:1227–1233

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Noshiro M, Makihira S, Kawamoto T, Shen M, Yan W, Kawashima-Ohya Y, Fujimoto K, Tanne K, Kato Y (1999) RGD-CAP ((beta)ig-h3) enhances the spreading of chondrocytes and fibroblasts via integrin alpha(1)beta(1). Biochim Biophys Acta 1451:196–205

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Doi T, Fujimoto K, Ijuin C, Tanaka N, Tanimoto K, Honda K, Nakahara M, Kato Y, Tanne K (2002a) RGD-CAP (betaig-h3) exerts a negative regulatory function on mineralization in the human periodontal ligament. J Dent Res 81:822–825

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Doi T, Tsutsumi S, Okada Y, Yoneno K, Kato Y, Tanne K (2002b) RGD-CAP ((beta)ig-h3) is expressed in precartilage condensation and in prehypertrophic chondrocytes during cartilage development. Biochim Biophys Acta 1572:114–122

    PubMed  CAS  Google Scholar 

  • Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, Miyazono K (2002) Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 193:299–318

    Article  PubMed  CAS  Google Scholar 

  • Park SW, Bae JS, Kim KS, Park SH, Lee BH, Choi JY, Park JY, Ha SW, Kim YL, Kwon TH, Kim IS, Park RW (2004) Beta ig-h3 promotes renal proximal tubular epithelial cell adhesion, migration and proliferation through the interaction with alpha3beta1 integrin. Exp Mol Med 36:211–219

    PubMed  CAS  Google Scholar 

  • Potts JD, Vincent EB, Runyan RB, Weeks DL (1992) Sense and antisense TGF beta 3 mRNA levels correlate with cardiac valve induction. Dev Dyn 193:340–345

    PubMed  CAS  Google Scholar 

  • Ramsdell AF, Markwald RR (1997) Induction of endocardial cushion tissue in the avian heart is regulated, in part, by TGFbeta-3-mediated autocrine signaling. Dev Biol (Orlando) 188:64–74

    CAS  Google Scholar 

  • Rawe IM, Zhan Q, Burrows R, Bennett K, Cintron C (1997) Beta-ig. Molecular cloning and in situ hybridization in corneal tissues. Invest Ophthalmol Vis Sci 38:893–900

    PubMed  CAS  Google Scholar 

  • Romano LA, Runyan RB (2000) Slug is an essential target of TGFbeta2 signaling in the developing chicken heart. Dev Biol 223:91–102

    Article  PubMed  CAS  Google Scholar 

  • Schneider D, Kleeff J, Berberat PO, Zhu Z, Korc M, Friess H, Buchler MW (2002) Induction and expression of betaig-h3 in pancreatic cancer cells. Biochim Biophys Acta 1588:1–6

    PubMed  CAS  Google Scholar 

  • Schorderet DF, Menasche M, Morand S, Bonnel S, Buchillier V, Marchant D, Auderset K, Bonny C, Abitbol M, Munier FL (2000) Genomic characterization and embryonic expression of the mouse Bigh3 (Tgfbi) gene. Biochem Biophys Res Commun 274:267–274

    Article  PubMed  CAS  Google Scholar 

  • Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF (1992) cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol 11:511–522

    PubMed  CAS  Google Scholar 

  • Skonier J, Bennett K, Rothwell V, Kosowski S, Plowman G, Wallace P, Edelhoff S, Disteche C, Neubauer M, Marquardt H, et al. (1994) beta ig-h3: a transforming growth factor-beta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol 13:571–584

    PubMed  CAS  Google Scholar 

  • Spemann H (1938) Embryonic development and induction. Yale University Press, New Haven

    Google Scholar 

  • Sugi Y, Yamamura H, Okagawa H, Markwald RR (2004) Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice. Dev Biol 269:505–518

    Article  PubMed  CAS  Google Scholar 

  • Webb S, Brown N, Anderson R (1998) Formation of the atrioventricular septal structures in the normal mouse. Circ Res 82:645–656

    PubMed  CAS  Google Scholar 

  • Wessels A, Sedmera D (2003) Developmental anatomy of the heart: a tale of mice and man. Physiol Genom 15:165–176

    Google Scholar 

  • Wilde J, Yokozeki M, Terai K, Kudo A, Moriyama K (2003) The divergent expression of periostin mRNA in the periodontal ligament during experimental tooth movement. Cell Tissue Res 312(3):345–351

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Okada M, Tsujikawa M, Shimomura Y, Nishida K, Inoue Y, Watanabe H, Maeda N, Kurahashi H, Kinoshita S, Nakamura Y, Tano Y (1998) A kerato-epithelin (betaig-h3) mutation in lattice corneal dystrophy type IIIA. Am J Hum Genet 62:719–722

    Article  PubMed  CAS  Google Scholar 

  • Yun SJ, Kim MO, Kim SO, Park J, Kwon YK, Kim IS, Lee EH (2002) Induction of TGF-beta-inducible gene-h3 (betaig-h3) by TGF-beta1 in astrocytes: implications for astrocyte response to brain injury. Brain Res Mol Brain Res 107:57–64

    Article  PubMed  CAS  Google Scholar 

  • Zhao YL, Piao CQ, Hei TK (2003) Tumor suppressor function of Betaig-h3 gene in radiation carcinogenesis. Adv Space Res 31:1575–1582

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Shao G, Piao CQ, Berenguer J, Hei TK (2004) Down-regulation of Betaig-h3 gene is involved in the tumorigenesis in human bronchial epithelial cells induced by heavy-ion radiation. Radiat Res 162:655–659

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the superb technical expertise of Sally Fairey. This project was supported by the National Heart, Lung and Blood Institutes of Health grants RO1-HL66231 (to C.H.M) and RO1-HL33756, PO1-HL52813 (to R.R.M. and A.W.), and a Pre-doctoral Cardiovascular Training Grant T32 HL07260 (E.E.W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey H. Mjaatvedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, R.A., Kern, C.B., Wessels, A. et al. Detection of βig-H3, a TGFβ induced gene, during cardiac development and its complementary pattern with periostin. Anat Embryol 210, 13–23 (2005). https://doi.org/10.1007/s00429-005-0010-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0010-z

Keywords

Navigation