Skip to main content
Log in

Corticothalamic and thalamocortical pathfinding in the mouse: dependence on intermediate targets and guidance axis

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Recently, increasing attention has been paid to the study of intermediate targets and their relay guidance role in long-range pathfinding. In the present study, mechanisms of corticothalamic and thalamocortical pathfinding were investigated in C57BL/6 mice using in vitro DiI labeling and in vivo cholera toxin labeling. Specifically, three important intermediate targets, the subplate, ganglionic eminence, and reticular thalamic nucleus, were studied for their role in corticothalamic and thalamocortical pathfinding. The results show that the neuroepithelium of the ganglionic eminence is a source of pioneer neurons and pioneer fibers. Through radial and tangential migration, these pioneer neurons and fibers can approach the differentiating field of the ganglionic eminence, the subplate and thalamic reticular nucleus to participate in the formation of these three intermediate targets. Furthermore, the subplate, ganglionic eminence and thalamic reticular nucleus are linked by pioneer neurons and fibers to form a guidance axis. The guidance axis and the three important intermediate targets provide an ideal environment of contact guidance and chemical guidance for the corticothalamic and thalamocortical pathfinding. The concept of a "waiting time" in the subplate and the thalamic reticular nucleus is likely due to the expression of a guidance effect, so that the thalamocortical and corticothalamic projections can be deployed spatially and temporally to the subplate and thalamic reticular nucleus before these projections enter their final destinations, the neocortex and thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Fig. 2 Fig. 3 Fig. 4
Fig. 5 Fig. 6 Fig. 7 Fig. 8
Fig. 9 Fig. 10 Fig. 11 Fig. 12
Fig. 13 Fig. 14
Fig. 15 Fig. 16
Fig. 17 Fig. 18 Fig. 19 Fig. 20
Fig. 21 Fig. 22
Fig. 23 Fig. 24

Similar content being viewed by others

Abbreviations

CLSM:

confocal laser scanning microscope

CP:

cortical plate

DF:

differentiating field

E:

embryonic day

GE:

ganglionic eminence

IC:

internal capsule

IZ:

intermediate zone

MZ:

marginal zone

NP:

neuroepithelium

P:

postnatal day

PB:

phosphate buffer

PBS:

phosphate-buffered saline

Po:

posterior group nucleus

Pr5:

principle sensory trigeminal nucleus

SI:

somatosensory cortex

SP:

subplate

SZ:

subventricular zone

RT:

reticular thalamic nucleus

V:

ventricle

VPM:

ventral posterior medial nucleus

VZ:

ventricular zone

WGA:

wheat germ agglutinin

WM:

white matter

References

  • Adams NC, Lozsadi DA, Guillery RW (1997) Complexities in the thalamocortical and corticothalamic pathways. Eur J Neurosci 9:204–209

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1995) Atlas of prenatal rat brain development. CRC Press, Boca Raton, pp 279–390

  • Armstrong-James M, Fox K (1987) Spatiotemporal convergence and divergence in the rat S1 "barrel" cortex. J Comp Neurol 263:265–281

    CAS  PubMed  Google Scholar 

  • Aroniadou-Anderjaska V, Keller A (1996) Intrinsic inhibitory pathways in mouse barrel cortex. Neuroreport 7:2363–2368

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1990) Development of layer I and the subplate in the rat neocortex. Exp Neurol 107:48–62

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development. Raven Press, New York, pp 3–29

  • Braisted JE, Tuttle R, O'Leary DD (1999) Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Dev Biol 208:430–440

    Article  CAS  PubMed  Google Scholar 

  • Catalano SM, Robertson RT, Killackey HP (1991) Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat. Proc Natl Acad Sci U S A 88:2999–3003

    CAS  PubMed  Google Scholar 

  • Catalano SM, Robertson RT, Killackey HP (1996) Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J Comp Neurol 367:36–53

    Article  CAS  PubMed  Google Scholar 

  • Ceranik K, Deng J, Heimrich B, Lübke J, Zhao S, Forster E, Frotscher M (1999) Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labeling. Eur J Neurosci 11:4278–4290

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska J, Carvell GE, Simons DJ (1989) Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex. J Comp Neurol 285:325–338

    CAS  PubMed  Google Scholar 

  • Clasca F, Angelucci A, Sur M (1995) Layer-specific programs of development in neocortical projection neurons. Proc Natl Acad Sci U S A 92:11145–11149

    CAS  PubMed  Google Scholar 

  • Coleman KA, Mitrofanis J (1996) Organization of the visual reticular thalamic nucleus of the rat. Eur J Neurosci 8:388–404

    CAS  PubMed  Google Scholar 

  • De Carlos JA, O'Leary DDM (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 12:1194–1211

    PubMed  Google Scholar 

  • Deng J, Elberger AJ (2001) The role of pioneer neurons in the development of mouse visual cortex and corpus callosum. Anat Embryol 204:437–453

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A (2000) Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J Physiol Paris 94:391–410

    Article  CAS  PubMed  Google Scholar 

  • Durham D, Woolsey TA (1985) Functional organization in cortical barrels of normal and vibrissae-damaged mice: a (3-H) 2-deoxyglucose study. J Comp Neurol 235:97–110

    CAS  PubMed  Google Scholar 

  • Elberger AJ, Honig MG (1990) Double-labeling tissue containing the carbocyanine dye, DiI, for immunocytochemistry. J Histochem Cytochem 38:735–739

    CAS  PubMed  Google Scholar 

  • Feldmeyer D, Sakmann B (2000) Synaptic efficacy and reliability of excitatory connections between the principal neurons of the input (layer 4) and output (layer 5) of the neocortex. J Physiol 525:31–39

    CAS  PubMed  Google Scholar 

  • Felsenfeld DP, Hynes MA, Skoter KM, Furley AJ, Jessell TM (1994) TAG-1 can mediate homophilic binding, but neurite outgrowth on TAG-1 requires an L1-like molecule and β1 integrins. Neuron 12:675–690

    CAS  PubMed  Google Scholar 

  • Frotscher M (1998) Caja-Retzius cells, reelin, and the formation of layer. Curr Opin Neurobiol 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Ghazanfar AA, Krupa DJ, Nicolelis MA (2001) Role of cortical feedback in the receptive field structure and nonlinear response properties of somatosensory thalamic neurons. Exp Brain Res 141:88–100

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A Shatz C (1992) Pathfinding and target selection by developing geniculocortical axons. J Neurosci 12:39–55

    CAS  PubMed  Google Scholar 

  • Ghosh A, Antonini A, McConnell SK, Shatz CJ (1990) Requirement for subplate neurons in the formation of thalamocortical connections. Nature 347:179–181

    Article  CAS  PubMed  Google Scholar 

  • Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101:697–713

    CAS  PubMed  Google Scholar 

  • Götz M, Novak N, Bastmeyer M, Bolz J (1992) Membrane bound molecules in the rat cerebral cortex regulate thalamic innervation. Development 116:507–519

    Google Scholar 

  • Henke-Fahle S, Mann F, Gotz M, Wild K, Bolz J (1996) Dual action of a carbohydrate epitope on afferent and efferent axons in cortical development. J Neurosci 16:4195–4206

    CAS  PubMed  Google Scholar 

  • Hevner RF, Shi L, Justice N et al. (2001) Tbr 1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366

    CAS  PubMed  Google Scholar 

  • Hillenbrand U, Hemmen JL van (2001) Does corticothalamic feedback control cortical velocity tuning? Neural Comput 13:327–355

    Google Scholar 

  • Ho RK, Goodman CS (1982) Peripheral pathways are pioneered by an array of central and peripheral neurones in grasshopper embryos. Nature 297:404–406

    CAS  PubMed  Google Scholar 

  • Hoeflinger BF, Bennett-Clarke CA, Chiaia NL, Killackey HP, Rhoades RW (1995) Patterning of local intracortical projections within the vibrissae representation of rat primary somatosensory cortex. J Comp Neurol 354:551–563

    CAS  PubMed  Google Scholar 

  • Jain M, Armstrong RJE, Barker RA, Rosser AE (2001) Cellular and molecular aspects of striatal development. Brain Res Bull 55:533–540

    Article  CAS  PubMed  Google Scholar 

  • Kageyama GH, Robertson RT (1993) Development of geniculocortical projections to visual cortex in rat: evidence for early ingrowth and synaptogenesis. J Comp Neurol 335:123–148

    Google Scholar 

  • Kakei S, Na J, Shinoda Y (2001) Thalamic terminal morphology and distribution of single corticothalamic axons originating from layer 5 and 6 of the cat motor cortex. J Comp Neurol 437:170–185

    Google Scholar 

  • Killackey HP (1973) Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res 51:326–331

    Article  CAS  PubMed  Google Scholar 

  • Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470

    CAS  PubMed  Google Scholar 

  • Lambert RC de, Goffinet AM (1998) A new view of early cortical development. Biochem Pharmacol 56:1403–1409

    Article  PubMed  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    CAS  PubMed  Google Scholar 

  • Levesque M, Gagnon S, Parent A, Deschenes M (1996) Axonal arborizations of corticostriatal and corticothalamic fibers arising from the second somatosensory area in the rat. Cereb Cortex 6:759–770

    CAS  PubMed  Google Scholar 

  • Lu SM, Lin RC (1993) Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10:1–16

    CAS  PubMed  Google Scholar 

  • Lübke J, Egger V, Sakmann B, Feldmeyer D (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J Neurosci 20:5300–5311

    CAS  PubMed  Google Scholar 

  • Lund RD, Mustari MJ (1977) Development of the geniculocortical pathway in rats. J Comp Neurol 173:289–242

    CAS  PubMed  Google Scholar 

  • Marcus RC, Blazeski R, Godement P, Mason CA (1995) Retinal axon divergence in the optic chiasm: uncrossed axons diverge from crossed axons within a midline glial specialization. J Neurosci 15:3716–3729

    CAS  PubMed  Google Scholar 

  • Marin O, Baker J, Puelles L, Rubenstein JL (2002) Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129:761–773

    CAS  PubMed  Google Scholar 

  • Marotte LR, Leamey CA, Waite PME (1997) Timecourse of development of the Wallaby trigeminal pathway: III. Thalamocortical and corticothalamic projections. J Comp Neurol 387:194–214

    Google Scholar 

  • McCasland JS, Woolsey TA (1988) High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex. J Comp Neurol 278:555–569

    CAS  PubMed  Google Scholar 

  • McConnell SK, Ghosh A, Shatz CJ (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982

    CAS  PubMed  Google Scholar 

  • Métin C, Godement P (1996) The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axon. J Neurosci 16:3219–3235

    PubMed  Google Scholar 

  • Métin C, Deleglise D, Serafini T, Kennedy TE, Tessier-Lavigne M (1997) A role for netrin-1 in the guidance of cortical efferents. Development 124:5063–5067

    PubMed  Google Scholar 

  • Miller B, Chou L, Finlay BL (1993) The early development of thalamocortical and corticothalamic projections. J Comp Neurol 335:16–41

    CAS  PubMed  Google Scholar 

  • Miller B, Blake NMJ, Erinjeri JP, Reistad CE, Sexton T, Admire P, Woolsey TA (2001) Postnatal growth of intrinsic connections in mouse barrel cortex. J Comp Neurol 436:17–31

    Article  CAS  PubMed  Google Scholar 

  • Miller KD, Pinto DJ, Simons DJ (2001) Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr Opin Neurobiol 11:488–497

    Article  CAS  PubMed  Google Scholar 

  • Mitrofanis J, Guillery RW (1993) New views of the thalamic reticular nucleus in the adult and the developing brain. Trends Neurosci 16:240–245

    Article  CAS  PubMed  Google Scholar 

  • Molnár Z (2000) Development and evolution of thalamocortical interaction. Eur J Morphol 38:313–320

    PubMed  Google Scholar 

  • Molnár Z, Blakemore C (1995) How do thalamic axons find their way to the cortex? Trends Neurosci 18:389–397

    Google Scholar 

  • Molnár Z, Cordery P (1999) Connection between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat. J Comp Neurol 413:1–25

    Article  PubMed  Google Scholar 

  • Molnár Z, Adams R, Blakemore C (1998a) Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosi 18:5723–5745

    Google Scholar 

  • Molnár Z, Adams R, Goffinet AM, Blakemore C (1998b) The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse. J Neurosci 18:5746–5765

    PubMed  Google Scholar 

  • O'Leary DDM, Koester SE (1993) Development of projection neuron types, axon pathways and patterned connections of the mammalian cortex. Neuron 10:991–1006

    CAS  PubMed  Google Scholar 

  • O'Rourke NA, Sullivan DP, Kaznowski CE, Jacobs AA, McConnell SK (1995) Tangential migration of neurons in developing cerebral cortex. Development 121:2165–2176

    CAS  PubMed  Google Scholar 

  • Parnavelas JG (2000) The origin and migration of cortical neurons: new vistas. Trends Neurosci 23:126–131

    Article  CAS  PubMed  Google Scholar 

  • Petersen CC, Sakmann B (2000) The excitatory neuronal network of rat layer 4 barrel cortex. J Neurosci 20:7579–7586

    CAS  PubMed  Google Scholar 

  • Pierret T, Lavallée P, Deschênes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20:7455–7462

    CAS  PubMed  Google Scholar 

  • Rakic P (1977) Prenatal development of the visual system in the rhesus monkey. Phil Trans R Soc Lond B 278:245–260

    CAS  Google Scholar 

  • Richards LJ, Koester SE, Tuttle R, O'Leary DDM (1997) Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target. J Neurosci 17:2445–2458

    CAS  PubMed  Google Scholar 

  • Rhoades RW, Crissman RS, Bennett-Clarke CA, Killackey HP, Chiaia NL (1996) Development and plasticity of local intracortical projections within the vibrissae representation of the rat primary somatosensory cortex. J Comp Neurol 370:524–535

    Google Scholar 

  • Shatz CJ, Luskin MB (1986) Relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex. J Neurosci 6:3655–3668

    CAS  PubMed  Google Scholar 

  • Soria JM, Fairen A (2000) Cellular mosaics in the rat marginal zone define an early neocortical territorialization. Cereb Cortex 10:400–412

    Article  CAS  PubMed  Google Scholar 

  • Sretavan DW, Feng L, Pure E, Reichardt LF (1994) Embryonic neurons of the developing optic chiasm express L1 and CD44, cell surface molecules with opposing effects on retinal axon growth. Neuron 12:957–975

    CAS  PubMed  Google Scholar 

  • Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangential migrating neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323

    PubMed  Google Scholar 

  • Tamamaki N, Sugimoto Y, Tanaka K, Takauji R (1999) Cell migration from the ganglionic eminence to the neocortex investigated by labeling nuclei with UV irradiation via a fiber-optic cable. Neurosci Res 35:241–251

    Article  CAS  PubMed  Google Scholar 

  • Tosney KW (1991) Cells and cell-interactions that guide motor axons in the developing chick embryo. Bioessays 13:17–23

    CAS  PubMed  Google Scholar 

  • Tosney KW, Landmesser LT (1985) Growth cone morphology and trajectory in the lumbosacral region of the chick embryo. J Neurosci 5:2345–2358

    CAS  PubMed  Google Scholar 

  • Ulfig N, Nickel J, Bohl J (1998) Transient features of the thalamic reticular nucleus in the human foetal brain. Eur J Neurosci 10:3773–3784

    Article  CAS  PubMed  Google Scholar 

  • Ulfig N, Neudorfer F, Bohl J (2000) Transient structure of the human fetal brain: subplate, thalamic reticular complex, ganglionic eminence. Histol Histopathol 15:771–785

    CAS  PubMed  Google Scholar 

  • Veinante P, Deschenes M (1999) Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J Neurosci 19:5085–5095

    Google Scholar 

  • Veinante P, Lavallee P, Deschenes M (2000) Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. J Comp Neurol 424:197–204

    Google Scholar 

  • Williams MN, Zahm DS, Jacquin MF (1994) Differential foci and synaptic organization of the principal and spinal trigeminal projections to the thalamus in the rat. Eur J Neurosci 6:429–453

    CAS  PubMed  Google Scholar 

  • Wizenmann A, Thanos S, Boxberg Y von, Bonhoeffer F (1993) Differential reaction of crossing and non-crossing rat retinal axons on cell membrane preparations from the chiasm midline: an in vitro study. Development 117:725–735

    CAS  PubMed  Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    CAS  PubMed  Google Scholar 

  • Yelnik J (2002) Functional anatomy of the basal ganglia. Move Disord 17:15–21

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants AA11325 and AA12163 (A.J.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea J. Elberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, J., Elberger, A.J. Corticothalamic and thalamocortical pathfinding in the mouse: dependence on intermediate targets and guidance axis. Anat Embryol 207, 177–192 (2003). https://doi.org/10.1007/s00429-003-0338-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0338-1

Keywords

Navigation