Skip to main content

Advertisement

Log in

Three different fates of cells migrating from somites into the limb bud

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Cells from the ventrolateral dermomyotomal lips at limb levels undergo epithelio-mesenchymal transition and migrate as individual and undifferentiated cells into the limb buds. The cells give rise to myocytes and blood vascular endothelial cells (BECs) in the limb. Using vascular endothelial growth factor receptor-3 (VEGFR-3) as a marker, it has also been shown that the somites contribute to endothelial cells of lymphatic vessels in the limbs, but it is unknown where the lymphangiogenic precursors are located within the somite. In this study we used the transcription factor Prox1 as a lymphatic marker and investigated whether cells in the dorso-lateral quarter of the somite differentiate into lymphatic endothelial cells (LECs) of the limbs. To label the migrating cells, the dorso-lateral part of an epithelial brachial somite was grafted homotopically from quail into chick embryos at HH stages 13–14. The chick hosts were incubated until day 10–11 of development. The quail cell nuclei were identified with QCPN (anti-quail) antibodies. Cell differentiation was analysed by immunohistochemical staining with QH1, anti-desmin and anti-Prox1 antibodies, and by in situ hybridisation with Prox1 probes. Our results confirm that quail cell nuclei are incorporated into the myotubes of the limb muscles. Quail cells are found in the endothelium of limb blood vessels and lymphatics, predominantly the dermal lymphatics. This indicates that superficial lymphatics develop independently from the deep ones and shows that cells migrating from the lateral somitic edge into the limb buds differentiate into three cell populations: myocytes, BECs and LECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–F.
Fig. 3.

Similar content being viewed by others

References

  • Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, Tybulewicz V, Lowell CA, Lepore JJ, Koretzky GA, Kahn ML (2003) Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299:247-51

    Article  CAS  PubMed  Google Scholar 

  • Aitkenhead M, Christ B, Eichmann E, Wilson DJ, Wilting J (1998) Paracrine and autocrine regulation of vascular endothelial growth factor during tissue differentiation in the quail. Dev Dynam 212:1-13

    Article  CAS  Google Scholar 

  • Beddington RS, Martin P (1989) An in situ transgenic enzyme marker to monitor migration of cells in the mid-gestation mouse embryo. Somite contribution to the early forelimb bud. Mol Biol Med 6:263-274

    CAS  PubMed  Google Scholar 

  • Beresford B (1983) Brachial muscles in the chick embryo: the fate of individual somites. J Embryol Exp Morphol 77:99-116

    CAS  PubMed  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376:768-771

    CAS  PubMed  Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245-58

    CAS  PubMed  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974) Experimentelle Untersuchungen zur Entwicklung der Brustwand beim Hühnerembryo. Experientia 30:1449-1451

    CAS  PubMed  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191:381-396

    CAS  PubMed  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 150:171-186

    CAS  PubMed  Google Scholar 

  • Christ B, Huang R, Wilting J (2000) The development of the avian vertebral column. Anat Embryol (Berl) 202: 179-194

    Google Scholar 

  • Christ B, Jacob HJ, Brand-Saberi B, Grim M (1993) On the development of the human hand. In: Preuschoft H and Chivers DJ (eds) Hands of Primates, Springer Berlin Heidelberg Wien New York, pp 405-421

  • Cossmann PH, Eggli PS, Christ B, Kurz H (1997) Mesoderm-derived cells proliferate in the embryonic central nervous system: confocal microscopy and three-dimensional visualization. Histochem Cell Biol 107:205-213

    Article  CAS  PubMed  Google Scholar 

  • Cossmann PH, Eggli PS, Kurz H (2000) Three-dimensional analysis of DNA replication foci: a comparative study on species and cell type in situ. Histochem Cell Biol 113:195-205

    CAS  PubMed  Google Scholar 

  • Dieterlen-Lièvre F, Pardanaud L (1998) Ontogeny of the endothelial network analyzed in the avian model. In: Little CD, Mironov V, Sage EH, editors. Vascular morphogenesis: in vivo, in vitro, in mente. Basel: Birkhäuser. pp 33-50

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49-92

    Google Scholar 

  • Huang R, Zhi Q, Wilting J, Christ B (1994) The fate of somitocoele cells in avian embryos. Anat Embryol 190:243-250

    CAS  PubMed  Google Scholar 

  • Jacob M, Christ B, Jacob HJ (1978) On the migration of myogenic stem cells into the prospective wing region of chick embryos. A scanning and transmission electron microscope study. Anat Embryol (Berl) 153 (2): 179-93

    Google Scholar 

  • Kardon G, Campbell JK, Tabin CJ (2002) Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev Cell 3:533-545

    CAS  PubMed  Google Scholar 

  • Kurz H, Korn J, Eggli PS, Huang R, Christ B (2001) Embryonic CNS angiogenesis does not involve blood-borne endothelial progenitors. J Comp Neurol 436:263-274

    Article  CAS  PubMed  Google Scholar 

  • Lance-Jones C (1988) The somitic level of origin of embryonic chick hindlimb muscles. Dev Biol 126: 394-407

    CAS  PubMed  Google Scholar 

  • Le Douarin NM (1982) The neural crest. Cambridge University Press, London

  • Myokai F, Washio N, Asahara Y, Yamaai T, Tanda N, Ishikawa T, Aoki S, Kurihara H, Murayama Y, Saito T, et al. (1995) Expression of the hepatocyte growth factor gene during chick limb development. Dev Dyn 202: 80-90

    CAS  PubMed  Google Scholar 

  • Oliver G, Sosa-Pineda B, Geisendorf S, Spana EP, Doe CQ, Gruss, P (1993) Prox 1, a prospero-related homeobox-gene expressed during mouse development. Mech Dev 44:3-16

    CAS  PubMed  Google Scholar 

  • Papoutsi M, Tomarev SI, Eichmann A, Pröls F, Christ B, Wilting J (2001) Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev Dyn 222:238-251

    Article  CAS  PubMed  Google Scholar 

  • Pardanaud L, Dieterlen-Lièvre F (1993) Emergence of endothelial and hemopoietic cells in the avian embryo. Anat Embryol 187:107-114

    CAS  PubMed  Google Scholar 

  • Pardanaud.L, Yassine.F, Dieterlen-Lièvre F (1989) Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:473-485

    PubMed  Google Scholar 

  • Pardanaud L, Altmann C, Kitos P, Dieterlen-Lièvre F (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339-349

    CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671-674

    CAS  PubMed  Google Scholar 

  • Rodriguez-Niedenfuhr M, Papoutsi M, Christ B, Nicolaides KH, von Kaisenberg CS, Tomarev SI, Wilting J (2001) Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium and lymphangioblasts. Anat Embryol (Berl) 204: 399-406

    Google Scholar 

  • Serra JA (1946) Histochemical tests for protein and amino acids: the characterization of basic proteins. Stain Technol 21:5-18

    Google Scholar 

  • Solursh M, Drake C, Meier S (1987) The migration of myogenic cells from the somites at the wing level in avian embryos. Dev Biol 121:389-396

    CAS  PubMed  Google Scholar 

  • Thery C, Sharpe MJ, Batley SJ, Stern CD, Gherardi E (1995) Expression of HGF/SF, HGF1/MSP, and c-met suggests new functions during early chick development. Dev Genet 17: 90-101

    CAS  PubMed  Google Scholar 

  • Tomarev SI, Sundin O, Banerjee-Basu S, Duncan MK, Yang JM, Piatigorsky J (1996) Chicken homeobox gene Prox 1 related to Drosophila prospero is expressed in the developing lens and retina. Dev Dyn 206:354-367

    Article  CAS  PubMed  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769-778

    CAS  PubMed  Google Scholar 

  • Williams LW (1910) The somites of the chick. J Anat 11:55-100

    Google Scholar 

  • Wilting J, Eichmann A, Christ B (1997) Expression of the avian VEGF receptor homologues Quek1 and Quek2 in blood-vascular and lymphatic endothelial and non-endothelial cells during quail embryonic development. Cell Tissue Res 288: 207-233

    CAS  PubMed  Google Scholar 

  • Wilting J, Papoutsi M, Schneider M, Christ B ( 2000) The lymphatic endothelium of the avian wing is of somite origin. Dev Dyn 217:271-278

    Article  CAS  PubMed  Google Scholar 

  • Wilting J, Brand-Saberi B, Huang R, Zhi, Q, Köntges G, Ordahl CP, Christ B (1995) Angiogenic potential of the avian somite. Dev Dyn 202:165-171

    CAS  PubMed  Google Scholar 

  • Wilting J, Papoutsi M, Christ B, Nicolaides KH, von Kaisenberg CS, Borges J, Stark GB, Alitalo K, Tomarev SI, Niemeyer C, Rössler J (2002) The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased tissues. FASEB J. 16:1271-1273

    Google Scholar 

  • Zhi Q, Huang R, Christ B, Brand-Saberi B (1996) Participation of individual brachial somites in the skeletal muscles of the avian distal wing. Anat Embryol 194:327-339

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs. S. Antoni, Mrs. E. Gimbel, Mrs. S. Konradi, Mrs. L. Koschny, Mrs. M. Schüttoff and Mr. G. Frank for their excellent technical assistance. This work was supported by grants of the Deutsche Forschungsgemeinschaft (SFB592, A1) to B.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Christ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Papoutsi, M., Huang, R. et al. Three different fates of cells migrating from somites into the limb bud. Anat Embryol 207, 29–34 (2003). https://doi.org/10.1007/s00429-003-0327-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0327-4

Keywords

Navigation