Skip to main content
Log in

Early development of the olfactory organ in sturgeons of the genus Acipenser: a comparative and electron microscopic study

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Formation and morphology of the olfactory organ of vertebrates has been intensely studied in some taxa for more than a century. As a functionally important and complex sensory organ, its ontogenetic development has often been a matter of debate on higher-level craniate evolution. However, sufficient knowledge of structure and development of the olfactory organ in the crucial taxa needed for a serious phylogenetic reasoning is generally not available. This study aims at this essential primary data source, the detailed structure, morphogenesis, and character definition of the olfactory organ in more basal clades of jawed vertebrates (Gnathostomata). Sturgeon fishes (Acipenseriformes) as recent basal actinopterygians are expected to provide insight into archaic characters and character combinations in bony fishes. Thus, the development of the olfactory placodes of the sterlet, Acipenser ruthenus, and the Siberian sturgeon, Acipenser baerii, was followed histologically, by semi-thin serial sections, and by scanning and transmission electron microscopy. Except for the timing, virtually no differences were observed between the two species. The olfactory placodes become two-layered early in embryonic development. Both the superficial epidermal and the subepidermal layer can easily be distinguished and their development followed by ultrastructural properties. There are three different types of receptor cells: ciliated, microvillous, and crypt cells. The development of the ciliated and the less abundant microvillous receptor cells from the subepidermal layer of the placode is demonstrated. The non-sensory cells of the differentiated olfactory epithelium, i.e. ciliated non-sensory cells and supporting cells, exclusively derive from the superficial epidermal layer. In this respect, acipenserids clearly demonstrate close resemblance to the morphogenetic process found in the tetrapod Xenopus (Anura). The only other adequately described mode found in the actinopterygian zebrafish (Danio rerio), is considered a derived character. In this case, all cells of the differentiated olfactory epithelium derive from one placodal cell layer. The mode of formation of the nasal sac and its ventilatory openings found in the acipenserids examined here, represents a widespread and probably a plesiomorphic condition of osteognathostomes. In both species, differentiation of the basic cellular composition of the olfactory epithelium is far advanced at the time of onset of extrinsic feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2 A–C.
Fig. 3 A–D.
Fig. 4A–D.
Fig. 5A–C.
Fig. 6A, B.
Fig. 7A, B.
Fig. 8A, B.
Fig. 9A–F.
Fig. 10 A, B.
Fig. 11.

Similar content being viewed by others

Abbreviations

AF :

After fertilization

AH :

After hatching

LM :

Light microscopy

SEM :

Scanning electron microscopy

TEM :

Transmission electron microscopy

ORN :

Olfactory receptor neuron

References

  • Baker CVH, Bronner-Fraser M (2001) Vertebrate cranial placodes. I. Embryonic induction. Dev Biol 232: 1–61

    Article  CAS  PubMed  Google Scholar 

  • Ballard WW, Needham RG (1964) Normal embryonic stages of Polyodon spathula (Walbaum). J Morphol 114: 465–478

    CAS  Google Scholar 

  • Balfour FM, Parker WN (1882) On the structure and development of Lepisosteus. Philos Trans Roy Soc, London 2: 359–442

    Google Scholar 

  • Bartsch P (1993) Development of the snout of the Australian lungfish Neoceratodus forsteri (Krefft, 1870), with special reference to cranial nerves. Acta Zool Stockh 74: 15–29

    Google Scholar 

  • Bartsch P, Britz R (1997) A single micropyle in the eggs of the most primitive living actinopterygian fish Polypterus. J Zool, London 241: 589–592

    Google Scholar 

  • Bemis WE, Grande L (1992) Early development of the actinopterygian head. I. External development and staging of the paddlefish Polyodon spathula. J Morphol 213: 47–83

    Google Scholar 

  • Berliner K (1902) Die Entwicklung des Geruchsorgans der Selachier. Arch Mikrosk Anat Entwicklungsmech 60: 386–406, pl. 20

    Google Scholar 

  • Bertmar G (1965) The olfactory organ and upper lips in Dipnoi, an embryological study. Acta Zool Stockh 46: 1–40

  • Bertmar G (1969) The vertebrate nose, remarks on its structural and functional adaptation and evolution. Evolution 23: 131–152

    Google Scholar 

  • Breucker H, Zeiske E, Melinkat R (1979) Development of the olfactory organ in the rainbow fish Nematocentris maccullochi (Atheriniformes, Melanotaeniidae). Cell Tissue Res 200: 53–68

    CAS  PubMed  Google Scholar 

  • Chen XY, Arratia G (1994) Olfactory organ of Acipenseriformes and comparison with other actinopterygians: Patterns of diversity. J Morphol 222: 241–267

    Google Scholar 

  • Costanzo RM, Graziadei PPC (1987) Development and plasticity of the olfactory system. In: Finger TE, Silver WL (eds) Neurobiology of taste and smell. Wiley, New York, pp 233–250

  • Dean, B (1897) On the larval development of Amia calva. Zool. Jahrb Abt Syst 9: 639–672, pls. 9–11

    Google Scholar 

  • Detlaff TA, Ginsburg AS, Schmalhausen OI (1993) Sturgeon fishes: developmental biology and aquaculture. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Devitsina GV, Kazhlayev AA (1993a) Chemoreceptor organs in early juvenile paddlefish, Polyodon spathula. J Ichthyol 33: 143–149

    Google Scholar 

  • Devitsina GV, Kazhlayev AA (1993b) Development of chemosensory organs in Siberian sturgeon, Acipenser baeri, and stellate sturgeon, A. stellatus. J Ichthyol 33: 9–19

    Google Scholar 

  • Dogiel A (1887) Ueber den Bau des Geruchsorgans bei Ganoiden, Knochenfischen und Amphibien. Arch Mikrosk Anat 29: 74–139

    Google Scholar 

  • Eisthen HL (1992) Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc Res Technique 23: 1–21

    CAS  Google Scholar 

  • Eisthen HL (1997) Evolution of vertebrate olfactory system. Brain Behav Evol 50: 222–233

    CAS  PubMed  Google Scholar 

  • Evans RE, Zielinski B, Hara TJ (1982) Development and regeneration of the olfactory organ in rainbow trout. In: Hara TJ (ed) Chemoreception in fishes. Elsevier, Amsterdam, pp 15–37

  • Gawrilenko A (1910) Die Entwicklung des Geruchsorgans bei Salmo salar. (Zur Stammesentwicklung des Jacobson'schen Organs). Anat Anz 36: 411–427

    Google Scholar 

  • Hansen A, Zeiske E (1993) Development of the olfactory organ in the zebrafish, Brachydanio rerio. J Comp Neurol 333: 289–300

    CAS  PubMed  Google Scholar 

  • Hansen A, Zeiske E (1994) Cell proliferation in the olfactory organ of the embryonic and larval zebrafish, Brachydanio rerio. In: Kurihara K, Suzuki N, Ogawa H (eds) Olfaction and taste XI. Springer, Tokyo, p 755

  • Hansen A, Zeiske E (1995a) Development of the olfactory organ in zebrafish: an electron microscopic and immunocytochemical study of early differentiation and growth. Biofizika 40: 151–162 (Russian with English summary)

    CAS  Google Scholar 

  • Hansen A Zeiske E (1995b) Development of the olfactory organ in zebrafish: an electron microscopic and immunocytochemical study of early differentiation and growth. Biophysics 40: 159–170

    Google Scholar 

  • Hansen A, Zeiske E (1998) The peripheral olfactory organ in the zebrafish, Danio rerio: an ultrastructural study. Chem Senses 23: 39–48

    CAS  PubMed  Google Scholar 

  • Hansen A, Bartsch P, Kasumyan AO, Zeiske E (1999) A comparison of developmental processes in the olfactory organs of lower aquatic vertebrates. In: Elsner N, Eysel U (eds) Proceedings of the 27th Göttingen Neurobiology Conference 1999, vol 1. Thieme, Stuttgart, p 248

  • Hansen A, Nikonov, A, Anderson KT, Morita Y, Caprio J, Sorensen PW, Finger TE (2002) Olfactory receptor neurons: functional, structural, and molecular correlates. Soc Neurosci Abstr 847.12

    Google Scholar 

  • Hansen A, Finger TE (2000) Phyletic distribution of crypt-type olfactory receptor neurons in fishes. Brain Behav Evol 55: 100–110

    Article  CAS  PubMed  Google Scholar 

  • Hennig W (1966) Phylogenetic Systematics. University of Illinois Press, Urbana. Chicago, London

  • Hoffmann CK (1884) Zur Ontogenie der Knochenfische. Arch Mikrosk Anat 23: 45–108

    Google Scholar 

  • Hofmann MH, Bleckmann H (1997) Subdivision of the olfactory system in the sterlet Acipenser ruthenus. Neurosci Lett 233: 154–156

    Article  CAS  PubMed  Google Scholar 

  • Holm JF (1894) The development of the olfactory organ in the Teleostei. Morph Jahrb Gegenbaur 21: 620–624

    Google Scholar 

  • Huesa G, Anadón R, Yánez J (2000) Olfactory projections in a chondrostean fish, Acipenser baeri: an experimental study. J Comp Neurol 428: 145–158

    Article  CAS  PubMed  Google Scholar 

  • Kasumyan AO, Kazhlayev AA (1993) Formation of searching behavioral reaction and olfactory sensitivity of food chemical signals during ontogeny of sturgeons (Acipenseridae). J Ichthyol 33: 51–65

    Google Scholar 

  • Kasumyan AO, Taufik LR (1994) Behavior reaction of juvenile sturgeons (Acipenseridae) to amino acids. J Ichthyol 34: 90–103

    Google Scholar 

  • Kleerekoper H. (1969) Olfaction in fishes. Indiana University Press, Bloomington

  • Klein SL, Graziadei PPC (1983) The differentiation of the olfactory placode in Xenopus laevis: A light and electron microscope study. J Comp Neurol 217: 17–30

    CAS  PubMed  Google Scholar 

  • Kupffer C von (1893) Studien zur vergleichenden Entwicklungsgeschichte des Kopfes der Kranioten. 1. Heft. Die Entwicklung des Kopfes von Acipenser sturio an Medianschnitten untersucht. Lehmann, Munich

  • Kupffer C von (1894) Studien zur vergleichenden Entwicklungsgeschichte des Kopfes der Kranioten. 2. Heft. Die Entwicklung des Kopfes von Ammocoetes planeri. Lehmann, Munich

  • Menco BPM, Farbman AI (1985) Genesis of cilia and microvilli of rat nasal epithelia during pre-natal development. I. Olfactory epithelium, qualitative studies. J Cell Sci 78:283–310

    CAS  PubMed  Google Scholar 

  • Miyake T, Herbing IH von, Hall BK (1997) Neural ectoderm, neural crest, and placodes: Contribution of the otic placode to the ectodermal lining of the embryonic opercular cavity in Atlantic cod (Teleostei). J Morphol 231: 231–252

    Article  Google Scholar 

  • Morita Y, Finger TE (1996) Olfactory receptor cell morphology correlates with site of axon termination in the olfactory bulb. Soc Neurosci Abstr 22: 1072

    Google Scholar 

  • Olsén KH (1993) Development of the olfactory organ of the Arctic charr, Salvelinus alpinus (L.) (Teleostei, Salmonidae). Can J Zool 71: 1973–1984

    Google Scholar 

  • Pyatkina GA (1974a) Electron microscopic studies on the olfactory organ in sturgeons. Z Evol Biokhim Fiziol 10: 314–315 (in Russian with English summary)

    Google Scholar 

  • Pyatkina GA (1974b) Electron microscopic investigation of the olfactory organ of the sturgeon Acipenser gueldenstaedti. In: Kreps EM (ed) Physiology and biochemistry of the lower vertebrates. Z Evol Biochim Fiziol (Suppl.). Nauka, Leningrad, pp 125–131 (in Russian with English summary)

  • Pyatkina GA (1975) Electron microscopic study of the olfactory organ in the sterlet Acipenser ruthenus. Arch Anat Gistol Embriol 68: 85–93 (in Russian with English summary)

    Google Scholar 

  • Pyatkina GA (1976) Receptor cells of various types and their proportional interrelation in the olfactory organ of larvae and adults of acipenserid fishes. Tsitologiya 18: 1444–1449 (in Russian with English summary)

    Google Scholar 

  • Reinke W (1937) Zur Ontogenie und Anatomie des Geruchsorgans der Knochenfische. Z Anat Entwicklungsgesch 106: 600–624

    Google Scholar 

  • Reiss JO, Burd GD (1997) Cellular molecular interactions in the development of the Xenopus olfactory system. Semin Cell Dev Biol 8: 171–179

    Article  CAS  Google Scholar 

  • Salensky W (1881) Recherches sur le développement du sterlet (Acipenser ruthenus). Arch Biol 2: 223–341

    Google Scholar 

  • Sorokin SP (1968) Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3:207–230

    CAS  PubMed  Google Scholar 

  • Teichmann H (1964) Experimente zur Nasenentwicklung der Regenbogenforelle (Salmo irideus W. Gibb.) Wilhelm Roux Arch Entwicklungsmech Org 155: 129–143

    Google Scholar 

  • Webb JF; Noden DM (1993) Ectodermal placodes: Contributions to the development of the vertebrate head. Am Zool 33: 434–447

    Google Scholar 

  • Yamamoto M (1982) Comparative morphology of the peripheral olfactory organ in teleosts. In: Hara TJ (ed) Developments in aquaculture and fisheries science. Elsevier, Amsterdam, pp 39–59

  • Zeiske E, Kux J, Melinkat R (1976) Development of the olfactory organ of oviparous and viviparous cyprinodonts (Teleostei). Z zool Syst Evolut-forsch 14: 34–40

    Google Scholar 

  • Zeiske E, Theisen B, Breucker H (1992) Structure, development, and evolutionary aspects of the peripheral olfactory system. In: Hara TJ (ed) Fish chemoreception. Chapman & Hall, London, pp 13–39

  • Zeiske E, Hansen A, Bartsch P, Kasumyan AO (1996) Development and growth of the olfactory organ of lower actinopterygian fish. Chem Senses 21: 692

    Google Scholar 

  • Zeiske E, Hansen A, Bartsch P, Kasumyan AO (1997) Early development of the olfactory organ in lower actinopterygian fish: Acipenser (sturgeon) and Polypterus (bichir). Chem Senses 22: 833

    Google Scholar 

  • Zielinski B, Hara TJ (1988) Morphological and physiological development of olfactory receptor cells in rainbow trout (Salmo gairdneri) embryos. J Comp Neurol 271: 300–311

    CAS  PubMed  Google Scholar 

  • Zielinski B, Hara TJ (1992) Ciliated and microvillar receptor cells degenerate and then differentiate in the olfactory epithelium of rainbow trout following olfactory nerve section. Microsc Res Technique 23: 22–27

    CAS  Google Scholar 

  • Zippel HP, Hansen A, Caprio J (1997) Renewing olfactory receptor neurons in goldfish do not require contact with the olfactory bulb to develop normal chemical responsiveness. J Comp Physiol A 181: 425–437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bernd Schmeller and his staff (Störnstein, Germany) for providing sterlet eggs and ample help in raising the embryos and larvae. Thanks are also due to Brigitte Segner, Karin Meyer, Martina Wichmann, Renate Walter for their skillful assistance with TEM and SEM preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeiske, E., Kasumyan, A., Bartsch, P. et al. Early development of the olfactory organ in sturgeons of the genus Acipenser: a comparative and electron microscopic study. Anat Embryol 206, 357–372 (2003). https://doi.org/10.1007/s00429-003-0309-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0309-6

Keywords

Navigation