Skip to main content

Advertisement

Log in

Association between PD-L1 expression and driver gene mutations in non-small cell lung cancer patients: correlation with clinical data

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Lung cancer is the leading cause of cancer death worldwide. Recently, promising therapies have emerged based on PD-1/PD-L1 immune checkpoint inhibitors, which have been approved even as frontline treatment for patients with non-small cell lung cancer (NSCLC). We examined the association between PD-L1 expression and clinicopathological parameters as well as overall survival in 220 NSCLC patients. PD-L1 expression was estimated by immunohistochemistry using 22C3 PharmDx Dako assay and was defined as high, if TPS was ≥ 50%, low, if TPS was 1%–49%, and absent, if TPS was < 1%. EGFR mutations were detected by COBAS while KRAS and BRAF mutations by pyrosequencing. ROS1 and ALK rearrangements were estimated by immunohistochemistry with positive cases being confirmed by CISH and FISH, respectively. Data analysis was performed using SPSS v25.0. PD-L1 expression was positively correlated with KRAS mutations. Anti-PD-1 therapy (pembrolizumab) prolonged overall survival compared to any other treatment. This effect was more pronounced in KRAS-mutated cases compared to KRAS wild-type ones. Patients with positive PD-L1 expression – high or low – who had been treated with pembrolizumab, showed significant survival benefit compared to positive or negative PD-L1 expressors who did not receive immunotherapy. In multivariate analysis, PD-L1 status, stage and pembrolizumab treatment were independent variables for overall survival. PD-L1 expression (TPS ≥ 1%) by itself emerged as a poor prognostic factor, while treatment with pembrolizumab prolonged overall survival. KRAS mutations may affect tumour microenvironment and patient’s response to immunotherapy. Immune checkpoint inhibitors could represent an alternative therapeutic option particularly for KRAS-mutated NSCLC patients. Further investigation into this notion is warranted in order to validate this observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29. https://doi.org/10.3322/caac.21208

    Article  PubMed  Google Scholar 

  2. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380. https://doi.org/10.1056/NEJMra0802714

    Article  CAS  Google Scholar 

  3. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A (2016) Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66:271–289. https://doi.org/10.3322/caac.21349

    Article  PubMed  Google Scholar 

  4. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D, Ha C, Johnson S, Kennemer MI, Mohan S, Nazarenko I, Watanabe C, Sparks AB, Shames DS, Gentleman R, de Sauvage FJ, Stern H, Pandita A, Ballinger DG, Drmanac R, Modrusan Z, Seshagiri S, Zhang Z (2010) The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465:473–477. https://doi.org/10.1038/nature09004

    Article  CAS  PubMed  Google Scholar 

  5. Soria JC, Mok TS, Cappuzzo F, Janne PA (2012) EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat Rev 38:416–430. https://doi.org/10.1016/j.ctrv.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  6. Thomas A, Liu SV, Subramaniam DS, Giaccone G (2015) Refining the treatment of NSCLC according to histological and molecular subtypes. Nat Rev Clin Oncol 12:511–526. https://doi.org/10.1038/nrclinonc.2015.90

    Article  CAS  PubMed  Google Scholar 

  7. Remon J, Hendriks LE, Cabrera C, Reguart N, Besse B (2018) Immunotherapy for oncogenic-driven advanced non-small cell lung cancers: is the time ripe for a change? Cancer Treat Rev 71:47–58. https://doi.org/10.1016/j.ctrv.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  8. Chatziandreou I, Tsioli P, Sakellariou S, Mourkioti I, Giannopoulou I, Levidou G, Korkolopoulou P, Patsouris E, Saetta AA (2015) Comprehensive molecular analysis of NSCLC; Clinicopathological associations. PLoS One 10:e0133859. https://doi.org/10.1371/journal.pone.0133859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mino-Kenudson M (2017) Immunohistochemistry for predictive biomarkers in non-small cell lung cancer. Transl Lung Cancer Res 6:570–587. https://doi.org/10.21037/tlcr.2017.07.06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sterlacci W, Fiegl M, Droeser RA, Tzankov A (2016) Expression of PD-L1 identifies a subgroup of more aggressive non-small cell carcinomas of the lung. Pathobiology 83:267–275. https://doi.org/10.1159/000444804

    Article  CAS  PubMed  Google Scholar 

  11. Sumimoto H, Takano A, Teramoto K, Daigo Y (2016) RAS-mitogen-activated protein kinase signal is required for enhanced PD-L1 expression in human lung cancers. PLoS One 11:e0166626. https://doi.org/10.1371/journal.pone.0166626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kerr KM, Nicolson MC (2016) Non-small cell lung Cancer, PD-L1, and the pathologist. Arch Pathol Lab Med 140:249–254. https://doi.org/10.5858/arpa.2015-0303-SA

    Article  PubMed  Google Scholar 

  13. Kim JH, Kim HS, Kim BJ (2017) Prognostic value of KRAS mutation in advanced non-small-cell lung cancer treated with immune checkpoint inhibitors: a meta-analysis and review. Oncotarget 8:48248–48252. https://doi.org/10.18632/oncotarget.17594

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen N, Fang W, Lin Z, Peng P, Wang J, Zhan J, Hong S, Huang J, Liu L, Sheng J, Zhou T, Chen Y, Zhang H, Zhang L (2017) KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother 66:1175–1187. https://doi.org/10.1007/s00262-017-2005-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji M, Liu Y, Li Q, Li X, Ning Z, Zhao W, Shi H, Jiang J, Wu C (2016) PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer Biol Ther 17:407–413. https://doi.org/10.1080/15384047.2016.1156256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evans M, O'Sullivan B, Hughes F, Mullis T, Smith M, Trim N, Taniere P (2018) The Clinicopathological and molecular associations of PD-L1 expression in non-small cell lung Cancer: analysis of a series of 10,005 cases tested with the 22C3 assay. Pathol Oncol Res:1–11. https://doi.org/10.1007/s12253-018-0469-6

  17. Ilie M, Khambata-Ford S, Copie-Bergman C, Huang L, Juco J, Hofman V, Hofman P (2017) Use of the 22C3 anti-PD-L1 antibody to determine PD-L1 expression in multiple automated immunohistochemistry platforms. PLoS One 12:e0183023. https://doi.org/10.1371/journal.pone.0183023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, Investigators K (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028. https://doi.org/10.1056/NEJMoa1501824

    Article  PubMed  Google Scholar 

  19. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O'Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, Investigators K (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung Cancer. N Engl J Med 375:1823–1833. https://doi.org/10.1056/NEJMoa1606774

    Article  CAS  PubMed  Google Scholar 

  20. Song Z, Yu X, Cheng G, Zhang Y (2016) Programmed death-ligand 1 expression associated with molecular characteristics in surgically resected lung adenocarcinoma. J Transl Med 14:188–187. https://doi.org/10.1186/s12967-016-0943-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lan B, Ma C, Zhang C, Chai S, Wang P, Ding L, Wang K (2018) Association between PD-L1 expression and driver gene status in non-small-cell lung cancer: a meta-analysis. Oncotarget 9:7684–7699. https://doi.org/10.18632/oncotarget.23969

    Article  PubMed  PubMed Central  Google Scholar 

  22. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550. https://doi.org/10.1016/S0140-6736(15)01281-7

    Article  CAS  PubMed  Google Scholar 

  23. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O'Brien M, Rao S, Hotta K, Vandormael K, Riccio A, Yang J, Pietanza MC, Brahmer JR (2019) Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung Cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 37:537–546. https://doi.org/10.1200/JCO.18.00149

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, Li H, Luo X, Ye T, Sun Y, Chen H (2014) Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther 7:567–573. https://doi.org/10.2147/OTT.S59959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Calles A, Liao X, Sholl LM, Rodig SJ, Freeman GJ, Butaney M, Lydon C, Dahlberg SE, Hodi FS, Oxnard GR, Jackman DM, Janne PA (2015) Expression of PD-1 and its ligands, PD-L1 and PD-L2, in smokers and never smokers with KRAS-mutant lung Cancer. J Thorac Oncol 10:1726–1735. https://doi.org/10.1097/JTO.0000000000000687

    Article  CAS  PubMed  Google Scholar 

  26. Huynh TG, Morales-Oyarvide V, Campo MJ, Gainor JF, Bozkurtlar E, Uruga H, Zhao L, Gomez-Caraballo M, Hata AN, Mark EJ, Lanuti M, Engelman JA, Mino-Kenudson M (2016) Programmed cell death ligand 1 expression in resected lung adenocarcinomas: association with immune microenvironment. J Thorac Oncol 11:1869–1878. https://doi.org/10.1016/j.jtho.2016.08.134

    Article  PubMed  Google Scholar 

  27. Cooper WA, Tran T, Vilain RE, Madore J, Selinger CI, Kohonen-Corish M, Yip P, Yu B, O'Toole SA, McCaughan BC, Yearley JH, Horvath LG, Kao S, Boyer M, Scolyer RA (2015) PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer 89:181–188. https://doi.org/10.1016/j.lungcan.2015.05.007

    Article  PubMed  Google Scholar 

  28. Yang H, Chen H, Luo S, Li L, Zhou S, Shen R, Lin H, Xie X (2017) The correlation between programmed death-ligand 1 expression and driver gene mutations in NSCLC. Oncotarget 8:23517–23528. https://doi.org/10.18632/oncotarget.15627

    Article  PubMed  PubMed Central  Google Scholar 

  29. Parra ER, Villalobos P, Zhang J, Behrens C, Mino B, Swisher S, Sepesi B, Weissferdt A, Kalhor N, Heymach JV, Moran C, Zhang J, Lee J, Rodriguez-Canales J, Gibbons D, Wistuba II (2018) Immunohistochemical and image analysis-based study shows that several immune checkpoints are co-expressed in non-small cell lung carcinoma tumors. J Thorac Oncol 13:779–791. https://doi.org/10.1016/j.jtho.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  30. Scheel AH, Ansen S, Schultheis AM, Scheffler M, Fischer RN, Michels S, Hellmich M, George J, Zander T, Brockmann M, Stoelben E, Groen H, Timens W, Perner S, von Bergwelt-Baildon M, Buttner R, Wolf J (2016) PD-L1 expression in non-small cell lung cancer: correlations with genetic alterations. Oncoimmunology 5:e1131379. https://doi.org/10.1080/2162402X.2015.1131379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Munfus-McCray D, Harada S, Adams C, Askin F, Clark D, Gabrielson E, Li QK (2011) EGFR and KRAS mutations in metastatic lung adenocarcinomas. Hum Pathol 42:1447–1453. https://doi.org/10.1016/j.humpath.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  32. Ahrendt SA, Decker PA, Alawi EA, Zhu Yr YR, Sanchez-Cespedes M, Yang SC, Haasler GB, Kajdacsy-Balla A, Demeure MJ, Sidransky D (2001) Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer 92:1525–1530

    Article  CAS  Google Scholar 

  33. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Janne PA, Januario T, Johnson DH, Klein P, Miller VA, Ostland MA, Ramies DA, Sebisanovic D, Stinson JA, Zhang YR, Seshagiri S, Hillan KJ (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23:5900–5909. https://doi.org/10.1200/JCO.2005.02.857

    Article  CAS  PubMed  Google Scholar 

  34. Zhu YC, Zhang XG, Lin XP, Wang WX, Li XF, Wu LX, Chen HF, Xu CW, Du KQ (2019) Clinicopathological features and clinical efficacy of crizotinib in Chinese patients with ROS1-positive non-small cell lung cancer. Oncol Lett 17:3466–3474. https://doi.org/10.3892/ol.2019.9949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miura Y, Sunaga N (2018) Role of immunotherapy for oncogene-driven non-small cell lung Cancer. Cancers (Basel) 10. https://doi.org/10.3390/cancers10080245

  36. Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra ER, Canales JR, Zhang J, Giri U, Gudikote J, Cortez MA, Yang C, Fan Y, Peyton M, Girard L, Coombes KR, Toniatti C, Heffernan TP, Choi M, Frampton GM, Miller V, Weinstein JN, Herbst RS, Wong KK, Zhang J, Sharma P, Mills GB, Hong WK, Minna JD, Allison JP, Futreal A, Wang J, Wistuba II, Heymach JV (2015) Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 5:860–877. https://doi.org/10.1158/2159-8290.CD-14-1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang Y, Fang W, Zhang Y, Hong S, Kang S, Yan Y, Chen N, Zhan J, He X, Qin T, Li G, Tang W, Peng P, Zhang L (2015) The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Oncotarget 6:14209–14219. https://doi.org/10.18632/oncotarget.3694

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang CY, Lin MW, Chang YL, Wu CT, Yang PC (2014) Programmed cell death-ligand 1 expression in surgically resected stage I pulmonary adenocarcinoma and its correlation with driver mutations and clinical outcomes. Eur J Cancer 50:1361–1369. https://doi.org/10.1016/j.ejca.2014.01.018

    Article  CAS  PubMed  Google Scholar 

  39. Igawa S, Sato Y, Ryuge S, Ichinoe M, Katono K, Hiyoshi Y, Otani S, Nagashio R, Nakashima H, Katagiri M, Sasaki J, Murakumo Y, Satoh Y, Masuda N (2017) Impact of PD-L1 expression in patients with surgically resected non-small-cell lung Cancer. Oncology 92:283–290. https://doi.org/10.1159/000458412

    Article  CAS  PubMed  Google Scholar 

  40. Hames ML, Chen H, Iams W, Aston J, Lovly CM, Horn L (2016) Correlation between KRAS mutation status and response to chemotherapy in patients with advanced non-small cell lung cancer. Lung Cancer 92:29–34. https://doi.org/10.1016/j.lungcan.2015.11.004

    Article  PubMed  Google Scholar 

  41. Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T, Yang JC (2018) Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol 4:210–216. https://doi.org/10.1001/jamaoncol.2017.4427

    Article  PubMed  Google Scholar 

  42. FALK AT, Yazbeck N, Guibert N, Chamorey E, Paquet A, Ribeyre L, Bence C, Zahaf K, Leroy S, Marquette CH, Cohen C, Mograbi B, Mazieres J, Hofman V, Brest P, Hofman P, Ilie M (2018) Effect of mutant variants of the KRAS gene on PD-L1 expression and on the immune microenvironment and association with clinical outcome in lung adenocarcinoma patients. Lung Cancer 121:70–75. https://doi.org/10.1016/j.lungcan.2018.05.009

    Article  PubMed  Google Scholar 

  43. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matikas A, Mistriotis D, Georgoulias V, Kotsakis A (2017) Targeting KRAS mutated non-small cell lung cancer: a history of failures and a future of hope for a diverse entity. Crit Rev Oncol Hematol 110:1–12. https://doi.org/10.1016/j.critrevonc.2016.12.005

    Article  PubMed  Google Scholar 

  45. Ihle NT, Byers LA, Kim ES, Saintigny P, Lee JJ, Blumenschein GR, Tsao A, Liu S, Larsen JE, Wang J, Diao L, Coombes KR, Chen L, Zhang S, Abdelmelek MF, Tang X, Papadimitrakopoulou V, Minna JD, Lippman SM, Hong WK, Herbst RS, Wistuba II, Heymach JV, Powis G (2012) Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst 104:228–239. https://doi.org/10.1093/jnci/djr523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25:272–281. https://doi.org/10.1016/j.ccr.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  47. Ng TL, Liu Y, Dimou A, Patil T, Aisner DL, Dong Z, Jiang T, Su C, Wu C, Ren S, Zhou C, Camidge DR (2019) Predictive value of oncogenic driver subtype, programmed death-1 ligand (PD-L1) score, and smoking status on the efficacy of PD-1/PD-L1 inhibitors in patients with oncogene-driven non-small cell lung cancer. Cancer 125:1038–1049. https://doi.org/10.1002/cncr.31871

    Article  CAS  PubMed  Google Scholar 

  48. Cha YJ, Kim HR, Lee CY, Cho BC, Shim HS (2016) Clinicopathological and prognostic significance of programmed cell death ligand-1 expression in lung adenocarcinoma and its relationship with p53 status. Lung Cancer 97:73–80. https://doi.org/10.1016/j.lungcan.2016.05.001

    Article  PubMed  Google Scholar 

  49. Sun JM, Zhou W, Choi YL, Choi SJ, Kim SE, Wang Z, Dolled-Filhart M, Emancipator K, Wu D, Weiner R, Frisman D, Kim HK, Choi YS, Shim YM, Kim J (2016) Prognostic significance of PD-L1 in patients with non-small cell lung Cancer: a large cohort study of surgically resected cases. J Thorac Oncol 11:1003–1011. https://doi.org/10.1016/j.jtho.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  50. Kerr KM, Thunnissen E, Dafni U, Finn SP, Bubendorf L, Soltermann A, Verbeken E, Biernat W, Warth A, Marchetti A, Speel EM, Pokharel S, Quinn AM, Monkhorst K, Navarro A, Madsen LB, Radonic T, Wilson J, De Luca G, Gray SG, Cheney R, Savic S, Martorell M, Muley T, Baas P, Meldgaard P, Blackhall F, Dingemans AM, Dziadziuszko R, Vansteenkiste J, Weder W, Polydoropoulou V, Geiger T, Kammler R, Peters S, Stahel R, Lungscape C (2019) A retrospective cohort study of PD-L1 prevalence, molecular associations and clinical outcomes in patients with NSCLC: results from the European thoracic oncology platform (ETOP) Lungscape project. Lung Cancer 131:95–103. https://doi.org/10.1016/j.lungcan.2019.03.012

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Eleni A. Karatrasoglou: study design, data analysis, paper drafting

Ilenia Chatziandreou: data analysis, performed experiments, paper drafting

Stratigoula Sakellariou: study design, histopathological analysis, paper drafting

Konstantinos Stamopoulos: clinical data collection and analysis, paper drafting

Nikolaos Kavantzas: paper critical revision

Andreas C. Lazaris: paper critical revision

Penelope Korkolopoulou: study design, histopathological analysis, paper critical revision, paper drafting

Angelica A. Saetta: study design, performed experiments, paper critical revision, paper drafting

All authors gave final approval of the final version to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Eleni A. Karatrasoglou, Ilenia Chatziandreou, Stratigoula Sakellariou and Konstantinos Stamopoulos have equally contributed to this manuscript.

Penelope Korkolopoulou and Angelica A. Saetta have equally contributed as senior authors to this manuscript.

Corresponding author

Correspondence to Eleni A. Karatrasoglou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All patients provided written informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Quality in Pathology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karatrasoglou, E.A., Chatziandreou, I., Sakellariou, S. et al. Association between PD-L1 expression and driver gene mutations in non-small cell lung cancer patients: correlation with clinical data. Virchows Arch 477, 207–217 (2020). https://doi.org/10.1007/s00428-020-02756-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-020-02756-1

Keywords

Navigation