Skip to main content

Advertisement

Log in

Immunohistochemical analysis of the expression of cancer-associated fibroblast markers in esophageal cancer with and without neoadjuvant therapy

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Esophageal carcinoma (EC) is one of the most aggressive human malignancies with high rates of resistance to conventional anticancer treatment. Cancer-associated fibroblasts (CAFs) are an important part of the tumor microenvironment and associated with tumor progression. COL11A1, SPARC, and CD90 have been identified as rather specific CAF markers, with COL11A1 expression particularly shown to influence response to chemotherapy. We investigated the impact of CAFs in esophageal cancer with a special focus on response to neoadjuvant treatment (nTX). Two collections of esophageal carcinomas were investigated: 164 cases treated with primary resection and 256 cases receiving nTX before resection. The expression of CAF markers was determined using next-generation tissue microarray (ngTMA®) technology and immunohistochemistry. The presence of COL11A1 and SPARC in fibroblasts within both primary resected cases and nTX-treated cases was associated with unfavorable clinicopathological variables such as higher (y)pT category and lymphatic invasion (p<0.001 each). The presence of COL11A1-positive CAFs was associated with worse overall survival in primary resected cases (HR: 2.162, p = 0.004, CI 95% 1.275–3.686). While in tumors showing regression after nTX, COL11A1-positive CAFs were detected less frequently, SPARC-positive CAFs were enriched after nTX, in both responding and non-responding patients (p < 0.001). Our results support the concept of CAFs as an important factor of tumor promotion and maintenance in EC. The population of CAFs increases with tumor progression and decreases, partly depending on the subtype, after regression following nTX. CAFs may serve as potential target for future therapeutic approaches for these highly aggressive tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29. https://doi.org/10.3322/caac.20138

    Article  PubMed  Google Scholar 

  2. Langer R, Becker K (2018) Tumor regression grading of gastrointestinal cancers after neoadjuvant therapy. Virchows Arch 472(2):175–186. https://doi.org/10.1007/s00428-017-2232-x

    Article  CAS  PubMed  Google Scholar 

  3. Tommelein J, De Vlieghere E, Verset L, Melsens E, Leenders J, Descamps B, Debucquoy A, Vanhove C, Pauwels P, Gespach CP, Vral A, De Boeck A, Haustermans K, de Tullio P, Ceelen W, Demetter P, Boterberg T, Bracke M, De Wever O (2018) Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation. Cancer Res 78(3):659–670. https://doi.org/10.1158/0008-5472.CAN-17-0524

    Article  CAS  PubMed  Google Scholar 

  4. Verset L, Tommelein J, Moles Lopez X, Decaestecker C, Boterberg T, De Vlieghere E, Salmon I, Mareel M, Bracke M, De Wever O, Demetter P (2015) Impact of neoadjuvant therapy on cancer-associated fibroblasts in rectal cancer. Radiother Oncol 116(3):449–454. https://doi.org/10.1016/j.radonc.2015.05.007

    Article  PubMed  Google Scholar 

  5. Hawsawi NM, Ghebeh H, Hendrayani SF, Tulbah A, Al-Eid M, Al-Tweigeri T, Ajarim D, Alaiya A, Dermime S, Aboussekhra A (2008) Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res 68(8):2717–2725. https://doi.org/10.1158/0008-5472.CAN-08-0192

    Article  CAS  PubMed  Google Scholar 

  6. Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA (2006) Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 116(7):1955–1962. https://doi.org/10.1172/JCI26532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zhang H, Xie C, Yue J, Jiang Z, Zhou R, Xie R, Wang Y, Wu S (2017) Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFbeta1 signaling loop in esophageal squamous cell carcinoma. Mol Carcinog 56(3):1150–1163. https://doi.org/10.1002/mc.22581

    Article  CAS  PubMed  Google Scholar 

  8. Underwood TJ, Hayden AL, Derouet M, Garcia E, Noble F, White MJ, Thirdborough S, Mead A, Clemons N, Mellone M, Uzoho C, Primrose JN, Blaydes JP, Thomas GJ (2015) Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J Pathol 235(3):466–477. https://doi.org/10.1002/path.4467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, Gilson MM, Wang C, Selby M, Taube JM, Anders R, Chen L, Korman AJ, Pardoll DM, Lowy I, Topalian SL (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175. https://doi.org/10.1200/JCO.2009.26.7609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cheng JD, Dunbrack RL Jr, Valianou M, Rogatko A, Alpaugh RK, Weiner LM (2002) Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res 62(16):4767–4772

    CAS  PubMed  Google Scholar 

  11. Chung KM, Hsu SC, Chu YR, Lin MY, Jiaang WT, Chen RH, Chen X (2014) Fibroblast activation protein (FAP) is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation. PLoS One 9(2):e88772. https://doi.org/10.1371/journal.pone.0088772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim H, Watkinson J, Varadan V, Anastassiou D (2010) Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genet 3:51. https://doi.org/10.1186/1755-8794-3-51

    Article  Google Scholar 

  13. Wu YH, Chang TH, Huang YF, Huang HD, Chou CY (2014) COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene 33(26):3432–3440. https://doi.org/10.1038/onc.2013.307

    Article  CAS  PubMed  Google Scholar 

  14. Schliekelman MJ, Creighton CJ, Baird BN, Chen Y, Banerjee P, Bota-Rabassedas N, Ahn YH, Roybal JD, Chen F, Zhang Y, Mishra DK, Kim MP, Liu X, Mino B, Villalobos P, Rodriguez-Canales J, Behrens C, Wistuba II, Hanash SM, Kurie JM (2017) Thy-1(+) Cancer-associated fibroblasts adversely impact lung cancer prognosis. Sci Rep 7(1):6478. https://doi.org/10.1038/s41598-017-06922-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Becker K, Mueller JD, Schulmacher C, Ott K, Fink U, Busch R, Bottcher K, Siewert JR, Hofler H (2003) Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 98(7):1521–1530. https://doi.org/10.1002/cncr.11660

    Article  PubMed  Google Scholar 

  16. Becker K, Langer R, Reim D, Novotny A, Meyer zum Buschenfelde C, Engel J, Friess H, Hofler H (2011) Significance of histopathological tumor regression after neoadjuvant chemotherapy in gastric adenocarcinomas: a summary of 480 cases. Ann Surg 253(5):934–939. https://doi.org/10.1097/SLA.0b013e318216f449

    Article  PubMed  Google Scholar 

  17. Zlobec I, Suter G, Perren A, Lugli A (2014) A Next-generation Tissue Microarray (ngTMA) Protocol for Biomarker Studies. J Vis Exp (91):e51893. https://doi.org/10.3791/51893

  18. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, Statistics Subcommittee of the NCIEWGoCD (2005) REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat Clin Pract Urol 2(8):416–422

    Article  CAS  PubMed  Google Scholar 

  19. Galván JA, García-Martínez J, Vázquez-Villa F, García-Ocaña M, García-Pravia C, Menéndez-Rodríguez P, González-del Rey C, Barneo-Serra L, de los Toyos JR (2014) Validation of COL11A1/procollagen 11A1 expression in TGF-β1-activated immortalised human mesenchymal cells and in stromal cells of human colon adenocarcinoma. BMC Cancer 14(1):867

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li M, Li M, Yin T, Shi H, Wen Y, Zhang B, Chen M, Xu G, Ren K, Wei Y (2016) Targeting of cancer-associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol Med Rep 13(3):2476–2484. https://doi.org/10.3892/mmr.2016.4868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jia D, Liu Z, Deng N, Tan TZ, Huang RY, Taylor-Harding B, Cheon DJ, Lawrenson K, Wiedemeyer WR, Walts AE, Karlan BY, Orsulic S (2016) A COL11A1-correlated pan-cancer gene signature of activated fibroblasts for the prioritization of therapeutic targets. Cancer Lett 382(2):203–214. https://doi.org/10.1016/j.canlet.2016.09.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. García-Pravia C, Galván JA, Gutiérrez-Corral N, Solar-García L, García-Pérez E, García-Ocaña M, Del Amo-Iribarren J, Menéndez-Rodríguez P, García-García J, Juan R (2013) Overexpression of COL11A1 by cancer-associated fibroblasts: clinical relevance of a stromal marker in pancreatic cancer. PLoS One 8(10):e78327

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vázquez-Villa F, García-Ocaña M, Galván JA, García-Martínez J, García-Pravia C, Menéndez-Rodríguez P, González-del Rey C, Barneo-Serra L, Juan R (2015) COL11A1/(pro) collagen 11A1 expression is a remarkable biomarker of human invasive carcinoma-associated stromal cells and carcinoma progression. Tumor Biol 36(4):2213–2222

    Article  Google Scholar 

  24. Shen L, Yang M, Lin Q, Zhang Z, Zhu B, Miao C (2016) COL11A1 is overexpressed in recurrent non-small cell lung cancer and promotes cell proliferation, migration, invasion and drug resistance. Oncol Rep 36(2):877–885. https://doi.org/10.3892/or.2016.4869

    Article  CAS  PubMed  Google Scholar 

  25. Wu YH, Chang TH, Huang YF, Chen CC, Chou CY (2015) COL11A1 confers chemoresistance on ovarian cancer cells through the activation of Akt/c/EBPbeta pathway and PDK1 stabilization. Oncotarget 6(27):23748–23763. https://doi.org/10.18632/oncotarget.4250

    Article  PubMed Central  PubMed  Google Scholar 

  26. He Y, Liu J, Zhao Z, Zhao H (2017) Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma. Dis Esophagus 30(5):1–8. https://doi.org/10.1093/dote/dow018

    Article  CAS  PubMed  Google Scholar 

  27. Brown JA, Yonekubo Y, Hanson N, Sastre-Perona A, Basin A, Rytlewski JA, Dolgalev I, Meehan S, Tsirigos A, Beronja S, Schober M (2017) TGF-beta-induced quiescence mediates chemoresistance of tumor-propagating cells in squamous cell carcinoma. Cell Stem Cell 21(5):650–664 e658. https://doi.org/10.1016/j.stem.2017.10.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM (2014) Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. Br J Cancer 110(3):724–732. https://doi.org/10.1038/bjc.2013.768

    Article  CAS  PubMed  Google Scholar 

  29. van Staalduinen J, Baker D, Ten Dijke P, van Dam H (2018) Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 37(48):6195–6211. https://doi.org/10.1038/s41388-018-0378-x

    Article  CAS  PubMed  Google Scholar 

  30. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA, Orimo A (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A 107(46):20009–20014. https://doi.org/10.1073/pnas.1013805107

    Article  PubMed Central  PubMed  Google Scholar 

  31. Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, Lester J, Beach JA, Tighiouart M, Walts AE, Karlan BY, Orsulic S (2014) A collagen-remodeling gene signature regulated by TGF-beta signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin Cancer Res 20(3):711–723. https://doi.org/10.1158/1078-0432.CCR-13-1256

    Article  CAS  PubMed  Google Scholar 

  32. Wang T, Srivastava S, Hartman M, Buhari SA, Chan CW, Iau P, Khin LW, Wong A, Tan SH, Goh BC, Lee SC (2016) High expression of intratumoral stromal proteins is associated with chemotherapy resistance in breast cancer. Oncotarget 7 (34):55155–55168. https://doi.org/10.18632/oncotarget.10894

  33. Wu J, Zhang JR, Jiang XQ, Cao XG (2017) Correlation between secreted protein acidic and rich in cysteine protein expression and the prognosis of postoperative patients exhibiting esophageal squamous cell carcinoma. Mol Med Rep 16(3):3401–3406. https://doi.org/10.3892/mmr.2017.6959

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y, Zhang Y, Tan Y, Liu Z (2017) Clinical significance of SPARC in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 492(2):184–191. https://doi.org/10.1016/j.bbrc.2017.08.043

    Article  CAS  PubMed  Google Scholar 

  35. Saalbach A, Hildebrandt G, Haustein UF, Anderegg U (2002) The Thy-1/Thy-1 ligand interaction is involved in binding of melanoma cells to activated Thy-1- positive microvascular endothelial cells. Microvasc Res 64(1):86–93. https://doi.org/10.1006/mvre.2002.2401

    Article  CAS  PubMed  Google Scholar 

  36. Tang KH, Dai YD, Tong M, Chan YP, Kwan PS, Fu L, Qin YR, Tsao SW, Lung HL, Lung ML, Tong DK, Law S, Chan KW, Ma S, Guan XY (2013) A CD90(+) tumor-initiating cell population with an aggressive signature and metastatic capacity in esophageal cancer. Cancer Res 73(7):2322–2332. https://doi.org/10.1158/0008-5472.CAN-12-2991

    Article  CAS  PubMed  Google Scholar 

  37. Li A, Li J, Lin J, Zhuo W, Si J (2017) COL11A1 is overexpressed in gastric cancer tissues and regulates proliferation, migration and invasion of HGC-27 gastric cancer cells in vitro. Oncol Rep 37(1):333–340. https://doi.org/10.3892/or.2016.5276

    Article  PubMed  Google Scholar 

  38. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, Gantt GA Jr, Sukhdeo K, DeVecchio J, Vasanji A, Leahy P, Hjelmeland AB, Kalady MF, Rich JN (2013) Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 210(13):2851–2872. https://doi.org/10.1084/jem.20131195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, Bonneau C, Kondratova M, Kuperstein I, Zinovyev A, Givel AM, Parrini MC, Soumelis V, Vincent-Salomon A, Mechta-Grigoriou F (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33(3):463–479 e410. https://doi.org/10.1016/j.ccell.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  40. Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H (2015) Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel) 7(4):2443–2458. https://doi.org/10.3390/cancers7040902

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Translational Research Unit at the Institute of Pathology, University of Bern (Switzerland), for excellent technical assistance and Prof. Dr. Inti Zlobec and Lester Thoo for revision and critical reading of the manuscript.

Funding

This work was supported by the Stiftung Krebshilfe (Switzerland) and Dr. Hans Altschüler Stiftung (Switzerland).

Author information

Authors and Affiliations

Authors

Contributions

JAG and RL conceived and planned the study. JSH, MF, KO, DK, and CAS provided the human tissue samples. JW and RL selected the human tissue samples and performed the annotations of the TMA cores. JAG constructed the ngTMAs and carried out the immunostainings. JW and JAG carried out the scoring and supervised by RL. JAG carried out the statistical analysis. JAG and RL contributed to the interpretation of the results. JAG wrote the manuscript with the support of RL. All authors provided critical feedback and helped shape the manuscript.

Corresponding author

Correspondence to José A. Galván.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of local ethics commission (Kantonale Ethikkommission Bern, Switzerland, 200/14 and Medizinische Fakultät of the Technische Universität München, 2056/08) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Quality in Pathology

Electronic supplementary material

ESM 1

(EPS 2883 kb)

ESM 2

(TIF 181888 kb)

ESM 3

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galván, J.A., Wiprächtiger, J., Slotta-Huspenina, J. et al. Immunohistochemical analysis of the expression of cancer-associated fibroblast markers in esophageal cancer with and without neoadjuvant therapy. Virchows Arch 476, 725–734 (2020). https://doi.org/10.1007/s00428-019-02714-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-019-02714-6

Keywords

Navigation