Skip to main content
Log in

Secretory IgA from submucosal glands does not compensate for its airway surface deficiency in chronic obstructive pulmonary disease

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Secretory immunoglobulin A (SIgA) reaches the airway lumen by local transcytosis across airway epithelial cells or with tracheobronchial submucosal gland secretions. In chronic obstructive pulmonary disease (COPD), deficiency of SIgA on the airway surface has been reported. However, reduction of SIgA levels in sputum and bronchoalveolar lavage (BAL) fluid has not been consistently observed. To explain this discrepancy, we analyzed BAL fluid and lung tissue from patients with COPD and control subjects. Immunohistochemical analysis of large and small airways of COPD patients showed that MUC5AC is the predominant mucin expressed by airway epithelial cells, whereas MUC5B is expressed in submucosal glands of large airways. Dual immunostaining with anti-IgA and anti-MUC5B antibodies showed reduction of IgA on the airway surface as well as accumulation of IgA within MUC5B-positive luminal mucus plugs, suggesting that luminal SIgA originates from submucosal glands in COPD patients. We found that the concentration of SIgA in BAL is inversely correlated with forced expiratory volume in 1 s (FEV1) in COPD, but that the ratio of SIgA/MUC5B is a better predictor of FEV1, particularly in patients with moderate COPD. Together, these findings suggest that SIgA production by submucosal glands, which are expanded in COPD, is insufficient to compensate for reduced SIgA transcytosis by airway epithelial cells. Localized SIgA deficiency on the surface of small airways is associated with COPD progression and represents a potential new therapeutic target in COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peterson J, Prisk G, Darquenne C (2008) Aerosol deposition in the human lung periphery is increased by reduced-density gas breathing. J Aerosol Med Pulm Drug Deliv 21:159–168

    Article  PubMed Central  PubMed  Google Scholar 

  2. Darquenne C (2012) Aerosol deposition in health and disease. J Aerosol Med Pulm Drug Deliv 25:140–147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Pilette C, Ouadrhiri Y, Godding V et al (2001) Lung mucosal immunity: immunoglobulin-A revisited. Eur Respir J 18:571–588

    Article  CAS  PubMed  Google Scholar 

  4. Knight D, Holgate S (2003) The airway epithelium: structural and functional properties in health and disease. Respirology 8:432–446

    Article  PubMed  Google Scholar 

  5. Pilette C, Durham S, Vaerman J et al (2004) Mucosal immunity in asthma and chronic obstructive pulmonary disease: a role for immunoglobulin A? Proc Am Thorac Soc 1:125–135

    Article  CAS  PubMed  Google Scholar 

  6. Goodman M, Link D, Brown W et al (1981) Ultrastructural evidence of transport of secretory IgA across bronchial epithelium. Am Rev Respir Dis 123:115–119

    CAS  PubMed  Google Scholar 

  7. Haimoto H, Nagura H, Imaizumi M et al (1984) Immunoelectronmicroscopic study on the transport of secretory IgA in the lower respiratory tract and alveoli. Virchows Arch A Pathol Anat Histopathol 404:369–380

    Article  CAS  PubMed  Google Scholar 

  8. Hunziker W, Kraehenbuhl J (1998) Epithelial transcytosis of immunoglobulins. J Mammary Gland Biol Neoplasia 3:287–302

    Article  CAS  PubMed  Google Scholar 

  9. Johansen F, Braathen R, Brandtzaeg P (2001) The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J Immunol 167:5185–5192

    Article  CAS  PubMed  Google Scholar 

  10. Brandtzaeg P, Johansen F (2005) Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 206:32–63

    Article  CAS  PubMed  Google Scholar 

  11. Brandtzaeg P (2003) Role of secretory antibodies in the defence against infections. Int J Med Microbiol 293:3–15

    Article  CAS  PubMed  Google Scholar 

  12. Woof J, Kerr M (2006) The function of immunoglobulin A in immunity. J Pathol 208:270–282

    Article  CAS  PubMed  Google Scholar 

  13. Brandtzaeg P (2007) Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25:5467–5484

    Article  CAS  PubMed  Google Scholar 

  14. Corthesy B (2007) Roundtrip ticket for secretory IgA: role in mucosal homeostasis? J Immunol 178:27–32

    Article  CAS  PubMed  Google Scholar 

  15. Pilette C, Godding V, Kiss R et al (2001) Reduced epithelial expression of secretory component in small airways correlates with airflow obstruction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163:185–194

    Article  CAS  PubMed  Google Scholar 

  16. Polosukhin V, Cates J, Lawson W et al (2011) Bronchial secretory immunoglobulin A deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184:317–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Stockley R, Burnett D (1980) Local IgA Production in patients with chronic bronchitis: effect of acute respiratory infection. Thorax 35:202–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Atis S, Tutluoglu B, Salepci B et al (2001) Serum IgA and secretory IgA levels in bronchial lavages from patients with a variety of respiratory diseases. J Investig Allergol Clin Immunol 11:112–117

    CAS  PubMed  Google Scholar 

  19. Ohlmeier S, Mazur W, Linja-Aho A et al (2012) Sputum proteomics identifies elevated PIgR levels in smokers and mild-to-moderate COPD. J Proteome Res 11:599–608

    Article  CAS  PubMed  Google Scholar 

  20. Pauwels R, Buist A, Calverley P et al (2001) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global initiative for chronic Obstructive Lung Disease (Gold) workshop summary. Am J Respir Crit Care Med 163:1256–1276

    Article  CAS  PubMed  Google Scholar 

  21. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: revised 2014. Global initiative for chronic Obstructive Lung Disease (Gold). Available Online: www.goldcopd.org (Accessed On January 23, 2014). 2014.

  22. Davis C, Dickey B (2008) Regulated airway goblet cell mucin secretion. Annu Rev Physiol 70:487–512

    Article  CAS  PubMed  Google Scholar 

  23. Boucherat O, Boczkowski J, Jeannotte L et al (2013) Cellular and molecular mechanisms of goblet cell metaplasia in the respiratory airways. Exp Lung Res 39:207–216

    Article  PubMed  Google Scholar 

  24. Ramos F, Krahnke J, Kim V (2014) Clinical issues of mucus accumulation in COPD. Int J Chron Obstruct Pulmon Dis 9:139–150

    PubMed Central  PubMed  Google Scholar 

  25. Voynow J, Rubin B (2009) Mucins, mucus, and sputum. Chest 135:505–512

    Article  CAS  PubMed  Google Scholar 

  26. Fahy J, Dickey B (2010) Airway mucus function and dysfunction. N Engl J Med 363:2233–2247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Jeffery P (2001) Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 164:S28–S38

    Article  CAS  PubMed  Google Scholar 

  28. Maestrelli P, Saetta M, Mapp C et al (2001) Remodeling in response to infection and injury. airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164:S76–S80

    Article  CAS  PubMed  Google Scholar 

  29. Clunes L, Davies C, Coakley R et al (2012) Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. Faseb J 26:533–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ghosh A, Boucher R, Tarran R (2015) Airway hydration and COPD. Cell Mol Life Sci 72(19):3637–3652

    Article  CAS  PubMed  Google Scholar 

  31. Seys L, Verhamme F, Dupont L et al (2015) Airway surface dehydration aggravates cigarette smoke-induced hallmarks of COPD in mice. Plos One 10, E0129897

    Article  PubMed Central  PubMed  Google Scholar 

  32. Polosukhin V (2001) Ultrastructure of the bronchial epithelium in chronic inflammation. Ultrastruct Pathol 25:119–128

    Article  CAS  PubMed  Google Scholar 

  33. Wanner A (1990) The role of mucus in chronic obstructive pulmonary disease. Chest 97:11s–15s

    Article  CAS  PubMed  Google Scholar 

  34. Ganesan S, Comstock A, Sajjan U (2013) Barrier function of airway tract epithelium. Tissue Barriers 1, E24997

    Article  PubMed Central  PubMed  Google Scholar 

  35. Hallstrand T, Hackett T, Altemeier W et al (2014) Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clin Immunol 151:1–15

    Article  CAS  PubMed  Google Scholar 

  36. Holtzman M, Byers D, Alexander-Brett J et al (2014) The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat Rev Immunol 14:686–698

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the US National Institutes of Health (NIH NHLBI HL092870, HL085317, HL105479, T32 HL094296, NIH HL088263, NIH HL126176, NIH NCRR UL1 RR024975, NCI U01 CA152662), the Department of Veterans Affairs Merit Review Award 1l01BX002378, and Forest Research Institute grant (DAL-IT-07).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliy V. Polosukhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, RH., Richmond, B.W., Blackwell, T.S. et al. Secretory IgA from submucosal glands does not compensate for its airway surface deficiency in chronic obstructive pulmonary disease. Virchows Arch 467, 657–665 (2015). https://doi.org/10.1007/s00428-015-1854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1854-0

Keywords

Navigation