Skip to main content

Advertisement

Log in

ALDH3A1 is overexpressed in a subset of hepatocellular carcinoma characterised by activation of the Wnt/ß-catenin pathway

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Aldehyde dehydrogenase isoforms, ALDH1A1 and ALDH3A1, are associated with poor clinical outcome and resistance to chemotherapy in a wide variety of human malignancies. So far, their expression and prognostic significance in hepatocellular carcinoma (HCC) remains unknown. The aim of our study was to investigate their expression in HCC, and to correlate this to clinical, pathological and molecular features. ALDH1A1 and ALDH3A1 expression was first evaluated by microarray analysis in a series of 60 HCCs and five tumour-free liver tissue samples. Our findings related to ALDH3A1 were further validated by immunohistochemistry in a series of 81 HCCs and 23 hepatocellular adenomas (HCA). Microarray analysis showed no difference in ALDH1A1 expression between HCCs and tumour-free liver tissue. In contrast, ALDH3A1 was strongly upregulated in a subset of HCCs characterised by activation of the Wnt/ß-catenin pathway and CTNNB1 mutations. Using immunohistochemistry, we confirmed that high ALDH3A1 expression is associated with nuclear staining for ß-catenin and strong homogeneous staining for glutamine synthetase, two classical Wnt/ß-catenin pathway activation markers. Consistent with this finding, in tumour-free liver tissue, ALDH3A1 expression was observed in centrilobular hepatocytes, in which the Wnt/ß-catenin pathway is known to be physiologically activated. We also observed higher ALDH3A1 expression in CTNNB1-mutated HCA when compared with other subtypes. No correlation between ALDH3A1 expression and patient survival or tumour recurrence was observed.

In conclusion, ALDH3A1 is a marker of activation of the Wnt/ß-catenin pathway in HCC, HCA and tumour-free liver tissue. Further studies may help to elucidate the potential role of ALDH3A1 in HCC development and resistance to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muzio G, Maggiora M, Paiuzzi E et al (2012) Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 52:735–746. doi:10.1016/j.freeradbiomed.2011.11.033

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Thompson DC, Koppaka V et al (2012) Ocular aldehyde dehydrogenases: rotection against ultraviolet damage and maintenance of transparency for vision. Prog Retin Eye Res 33:28–39. doi:10.1016/j.preteyeres.2012.10.001

    Article  PubMed  Google Scholar 

  3. Kiefer FW, Orasanu G, Nallamshetty S et al (2012) Retinaldehyde dehydrogenase 1 coordinates hepatic gluconeogenesis and lipid metabolism. Endocrinology 153:3089–3099. doi:10.1210/en.2011-2104

    Article  CAS  PubMed  Google Scholar 

  4. Charafe-Jauffret E, Ginestier C, Iovino F et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16:45–55. doi:10.1158/1078-0432.CCR-09-1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Li X, Wan L, Geng J et al (2012) Aldehyde dehydrogenase 1A1 possesses stem-like properties and predicts lung cancer patient outcome. J Thorac Oncol 7:1235–1245. doi:10.1097/JTO.0b013e318257cc6d

    Article  PubMed  Google Scholar 

  6. Luo Y, Dallaglio K, Chen Y et al (2012) ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30:2100–2113. doi:10.1002/stem.1193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  8. Moreb JS, Baker HV, Chang L-J et al (2008) ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Mol Cancer 7:87. doi:10.1186/1476-4598-7-87

    Article  PubMed Central  PubMed  Google Scholar 

  9. Muzio G, Trombetta A, Maggiora M et al (2006) Arachidonic acid suppresses growth of human lung tumor A549 cells through down-regulation of ALDH3A1 expression. Free Radic Biol Med 40:1929–1938. doi:10.1016/j.freeradbiomed.2006.01.020

    Article  CAS  PubMed  Google Scholar 

  10. Muzio G, Canuto RA, Trombetta A, Maggiora M (2001) Inhibition of cytosolic class 3 aldehyde dehydrogenase by antisense oligonucleotides in rat hepatoma cells. Chem Biol Interact 130–132:219–225

    Article  PubMed  Google Scholar 

  11. Duong H-Q, Hwang JS, Kim HJ et al (2012) Aldehyde dehydrogenase 1A1 confers intrinsic and acquired resistance to gemcitabine in human pancreatic adenocarcinoma MIA PaCa-2 cells. Int J Oncol 41:855–861. doi:10.3892/ijo.2012.1516

    CAS  PubMed  Google Scholar 

  12. Huang C-P, Tsai M-F, Chang T-H et al (2013) ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett 328:144–151. doi:10.1016/j.canlet.2012.08.021

    Article  CAS  PubMed  Google Scholar 

  13. Khoury T, Ademuyiwa FO, Chandrasekhar R et al (2012) Aldehyde dehydrogenase 1A1 expression in breast cancer is associated with stage, triple negativity, and outcome to neoadjuvant chemotherapy. Mod Pathol 25:388–397. doi:10.1038/modpathol.2011.172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Schäfer A, Teufel J, Ringel F et al (2012) Aldehyde dehydrogenase 1A1–a new mediator of resistance to temozolomide in glioblastoma. Neuro-oncology 14:1452–1464. doi:10.1093/neuonc/nos270

    Article  PubMed Central  PubMed  Google Scholar 

  15. Shibuya A, Takeuchi A, Shibata H et al (1994) Immunohistochemical study of hepatocellular carcinoma-specific aldehyde dehydrogenase. Alcohol Alcohol Suppl 29:119–123

    CAS  PubMed  Google Scholar 

  16. Boyault S, Rickman DS, de Reyniès A et al (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45:42–52. doi:10.1002/hep.21467

    Article  CAS  PubMed  Google Scholar 

  17. Nault J-C, Zucman-Rossi J (2011) Genetics of hepatobiliary carcinogenesis. Semin Liver Dis 31:173–187. doi:10.1055/s-0031-1276646

    Article  CAS  PubMed  Google Scholar 

  18. Guichard C, Amaddeo G, Imbeaud S et al (2012) Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 44:694–698. doi:10.1038/ng.2256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Thompson MD, Monga SPS (2007) WNT/beta-catenin signaling in liver health and disease. Hepatology 45:1298–1305. doi:10.1002/hep.21651

    Article  CAS  PubMed  Google Scholar 

  20. Zucman-Rossi J, Jeannot E, Nhieu JTV et al (2006) Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 43:515–524. doi:10.1002/hep.21068

    Article  CAS  PubMed  Google Scholar 

  21. Nault J-C, Bioulac-Sage P, Zucman-Rossi J (2013) Hepatocellular benign tumors-from molecular classification to personalized clinical care. Gastroenterology 144:888–902. doi:10.1053/j.gastro.2013.02.032

    Article  CAS  PubMed  Google Scholar 

  22. Nault JC, Fabre M, Couchy G et al (2011) GNAS-activating mutations define a rare subgroup of inflammatory liver tumors characterized by STAT3 activation. J Hepatol. doi:10.1016/j.jhep.2011.07.018

    PubMed  Google Scholar 

  23. Calderaro J, Labrune P, Morcrette G et al (2012) Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I. J Hepatol. doi:10.1016/j.jhep.2012.09.030

    Google Scholar 

  24. Decaens T, Godard C, de Reyniès A et al (2008) Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 47:247–258. doi:10.1002/hep.21952

    Article  CAS  PubMed  Google Scholar 

  25. Huang EH, Hynes MJ, Zhang T et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69:3382–3389. doi:10.1158/0008-5472.CAN-08-4418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sullivan JP, Spinola M, Dodge M et al (2010) Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70:9937–9948. doi:10.1158/0008-5472.CAN-10-0881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fleischman AG (2012) ALDH marks leukemia stem cell. Blood 119:3376–3377. doi:10.1182/blood-2012-02-406751

    Article  CAS  PubMed  Google Scholar 

  28. Audard V, Grimber G, Elie C et al (2007) Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations. J Pathol 212:345–352. doi:10.1002/path.2169

    Article  CAS  PubMed  Google Scholar 

  29. Sládek NE, Kollander R, Sreerama L, Kiang DT (2002) Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: a retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemother Pharmacol 49:309–321. doi:10.1007/s00280-001-0412-4

    Article  PubMed  Google Scholar 

  30. Moreb JS, Mohuczy D, Muhoczy D et al (2007) RNAi-mediated knockdown of aldehyde dehydrogenase class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamide. Cancer Chemother Pharmacol 59:127–136. doi:10.1007/s00280-006-0233-6

    Article  CAS  PubMed  Google Scholar 

  31. Hu G, Chong RA, Yang Q et al (2009) MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 15:9–20. doi:10.1016/j.ccr.2008.11.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nault J-C, De Reyniès A, Villanueva A et al (2013) A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection. Gastroenterology 145:176–187. doi:10.1053/j.gastro.2013.03.051

    Article  CAS  PubMed  Google Scholar 

  33. Hsu HC, Jeng YM, Mao TL et al (2000) Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157:763–770

    Article  CAS  PubMed  Google Scholar 

  34. Hoshida Y, Toffanin S, Lachenmayer A et al (2010) Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis 30:35–51. doi:10.1055/s-0030-1247131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Villanueva A, Hoshida Y, Battiston C et al (2011) Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 140:1501–1512.e2. doi:10.1053/j.gastro.2011.02.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lachenmayer A, Alsinet C, Savic R et al (2012) Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin Cancer Res 18:4997–5007. doi:10.1158/1078-0432.CCR-11-2322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Authors warmly thank Tumourotheque/Plateforme des Ressources Biologiques of Henri Mondor University Hospital and Réseau des CRB Foie-Inserm. This project was funded by Inserm, the INCA HCC-PAIR project and the ARC 5194 grant.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Zucman-Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calderaro, J., Nault, JC., Bioulac-Sage, P. et al. ALDH3A1 is overexpressed in a subset of hepatocellular carcinoma characterised by activation of the Wnt/ß-catenin pathway. Virchows Arch 464, 53–60 (2014). https://doi.org/10.1007/s00428-013-1515-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-013-1515-0

Keywords

Navigation