Skip to main content

Advertisement

Log in

Overexpression of matriptase correlates with poor prognosis in esophageal squamous cell carcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Matriptase is one of the type II transmembrane serine proteases and is known to be involved in cancer progression. Increased matriptase expression has been reported in a variety of human cancers, and its association with poor prognosis has been highlighted in some cancer types. However, its exact role in cancer progression and its effect on patient survival in esophageal squamous cell carcinoma (ESCC) are still unclear. We performed immunohistochemical staining of matriptase in 171 ESCC samples after antibody validation and evaluated the association of its expression with clinicopathological parameters and prognosis. High matriptase expression was observed in 38.6 % (66/171) of ESCC samples and more frequently in N3 stage and in poorly differentiated tumors. Both overall survival (OS) and disease-free survival (DFS) were significantly lower for patients with high expression of matriptase than for patients with low expression (5-year OS rate, 38.6 vs 55.3 %; p = 0.034 and 5-year DFS rate, 30.5 vs 49.4 %; p = 0.007). High matriptase expression was an independent prognostic factor for OS [hazard ratio (HR), 1.65 (95 % confidence interval (CI), 1.01–2.68); p = 0.045] and for DFS [HR, 1.79 (95 % CI, 1.14–2.81); p = 0.012]. In conclusion, higher expression of matriptase is an independent prognostic factor involved in the progression of ESCC, which suggests that matriptase is a factor in ESCC tumor progression and also a potential molecular therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bosman FT, Carneiro F, Hruban RH, Theise ND (2010) WHO classfication of tumours of the digestive system, 4th edn. International Agency for Research on Cancer, Lyon

    Google Scholar 

  2. Cao J, Cai X, Zheng L, Geng L, Shi Z, Pao CC, Zheng S (1997) Characterization of colorectal-cancer-related cDNA clones obtained by subtractive hybridization screening. J Cancer Res Clin Oncol 123:447–451

    Article  CAS  PubMed  Google Scholar 

  3. Cheng MF, Tzao C, Tsai WC, Lee WH, Chen A, Chiang H, Sheu LF, Jin JS (2006) Expression of EMMPRIN and matriptase in esophageal squamous cell carcinoma: correlation with clinicopathological parameters. Dis Esophagus 19:482–486

    Article  PubMed  Google Scholar 

  4. Cho EG, Kim MG, Kim C, Kim SR, Seong IS, Chung C, Schwartz RH, Park D (2001) N-terminal processing is essential for release of epithin, a mouse type II membrane serine protease. J Biol Chem 276:44581–44589

    Google Scholar 

  5. Ding KF, Sun LF, Ge WT, Hu HG, Zhang SZ, Zheng S (2005) Effect of SNC19/ST14 gene overexpression on invasion of colorectal cancer cells. World J Gastroenterol 11:5651–5654

    CAS  PubMed  Google Scholar 

  6. Farady CJ, Sun J, Darragh MR, Miller SM, Craik CS (2007) The mechanism of inhibition of antibody-based inhibitors of membrane-type serine protease 1 (MT-SP1). J Mol Biol 369:1041–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fittler H, Avrutina O, Glotzbach B, Empting M, Kolmar H (2013) Combinatorial tuning of peptidic drug candidates: high-affinity matriptase inhibitors through incremental structure-guided optimization. Org Biomol Chem 11:1848–1857

    Article  CAS  PubMed  Google Scholar 

  8. Forbs D, Thiel S, Stella MC, Sturzebecher A, Schweinitz A, Steinmetzer T, Sturzebecher J, Uhland K (2005) In vitro inhibition of matriptase prevents invasive growth of cell lines of prostate and colon carcinoma. Int J Oncol 27:1061–1070

    PubMed  Google Scholar 

  9. Galkin AV, Mullen L, Fox WD, Brown J, Duncan D, Moreno O, Madison EL, Agus DB (2004) CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts. Prostate 61:228–235

    Article  CAS  PubMed  Google Scholar 

  10. Hongo M, Nagasaki Y, Shoji T (2009) Epidemiology of esophageal cancer: Orient to Occident. Effects of chronology, geography and ethnicity. J Gastroenterol Hepatol 24:729–735

    Article  PubMed  Google Scholar 

  11. Hooper JD, Clements JA, Quigley JP, Antalis TM (2001) Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 276:857–860

    Article  CAS  PubMed  Google Scholar 

  12. Jin JS, Chen A, Hsieh DS, Yao CW, Cheng MF, Lin YF (2006) Expression of serine protease matriptase in renal cell carcinoma: correlation of tissue microarray immunohistochemical expression analysis results with clinicopathological parameters. Int J Surg Pathol 14:65–72

    Article  CAS  PubMed  Google Scholar 

  13. Jin JS, Cheng TF, Tsai WC, Sheu LF, Chiang H, Yu CP (2007) Expression of the serine protease, matriptase, in breast ductal carcinoma of Chinese women: correlation with clinicopathological parameters. Histol Histopathol 22:305–309

    CAS  PubMed  Google Scholar 

  14. Jin JS, Hsieh DS, Loh SH, Chen A, Yao CW, Yen CY (2006) Increasing expression of serine protease matriptase in ovarian tumors: tissue microarray analysis of immunostaining score with clinicopathological parameters. Mod Pathol 19:447–452

    Article  CAS  PubMed  Google Scholar 

  15. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, Rimm DL, Camp RL (2003) Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63:1101–1105

    CAS  PubMed  Google Scholar 

  16. Kim MG, Chen C, Lyu MS, Cho EG, Park D, Kozak C, Schwartz RH (1999) Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 49:420–428

    Google Scholar 

  17. Kim C, Lee HS, Lee D, Lee SD, Cho EG, Yang SJ, Kim SB, Park D, Kim MG (2011) Epithin/PRSS14 proteolytically regulates angiopoietin receptor Tie2 during transendothelial migration. Blood 117:1415–1424

    Google Scholar 

  18. Lao-Sirieix P, Fitzgerald RC (2012) Screening for oesophageal cancer. Nat Rev Clin Oncol 9:278–287

    Article  PubMed  Google Scholar 

  19. Lee JW, Yong Song S, Choi JJ, Lee SJ, Kim BG, Park CS, Lee JH, Lin CY, Dickson RB, Bae DS (2005) Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. Hum Pathol 36:626–633

    Article  CAS  PubMed  Google Scholar 

  20. Lee SL, Dickson RB, Lin CY (2000) Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275:36720–36725

    Article  CAS  PubMed  Google Scholar 

  21. Li P, Jiang S, Lee SL, Lin CY, Johnson MD, Dickson RB, Michejda CJ, Roller PP (2007) Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1. J Med Chem 50:5976–5983

    Article  CAS  PubMed  Google Scholar 

  22. Lin CY, Wang JK, Torri J, Dou L, Sang QA, Dickson RB (1997) Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. J Biol Chem 272:9147–9152

    Article  CAS  PubMed  Google Scholar 

  23. List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, Burke B, Nielsen BS, Gutkind JS, Bugge TH (2005) Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19:1934–1950

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto K, Nakamura T (1996) Emerging multipotent aspects of hepatocyte growth factor. J Biochem 119:591–600

    Article  CAS  PubMed  Google Scholar 

  25. Nakamura K, Hongo A, Kodama J, Abarzua F, Nasu Y, Kumon H, Hiramatsu Y (2009) Expression of matriptase and clinical outcome of human endometrial cancer. Anticancer Res 29:1685–1690

    PubMed  Google Scholar 

  26. Oberst MD, Johnson MD, Dickson RB, Lin CY, Singh B, Stewart M, Williams A, Al-Nafussi A, Smyth JF, Gabra H, Sellar GC (2002) Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res 8:1101–1107

    CAS  PubMed  Google Scholar 

  27. Quimbar P, Malik U, Sommerhoff CP, Kaas Q, Chan LY, Huang YH, Grundhuber M, Dunse K, Craik DJ, Anderson MA, Daly NL (2013) High-affinity cyclic peptide matriptase inhibitors. J Biol Chem 288:13885–13896

    Article  CAS  PubMed  Google Scholar 

  28. Ren Y, Cao B, Law S, Xie Y, Lee PY, Cheung L, Chen Y, Huang X, Chan HM, Zhao P, Luk J, Vande Woude G, Wong J (2005) Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: a prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res 11:6190–6197

    Article  CAS  PubMed  Google Scholar 

  29. Saeki H, Oda S, Kawaguchi H, Ohno S, Kuwano H, Maehara Y, Sugimachi K (2002) Concurrent overexpression of Ets-1 and c-Met correlates with a phenotype of high cellular motility in human esophageal cancer. Int J Cancer 98:8–13

    Article  CAS  PubMed  Google Scholar 

  30. Saleem M, Adhami VM, Zhong W, Longley BJ, Lin CY, Dickson RB, Reagan-Shaw S, Jarrard DF, Mukhtar H (2006) A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev 15:217–227

    Article  CAS  PubMed  Google Scholar 

  31. Satomi S, Yamasaki Y, Tsuzuki S, Hitomi Y, Iwanaga T, Fushiki T (2001) A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun 287:995–1002

    Article  CAS  PubMed  Google Scholar 

  32. Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB (1993) Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 53:1409–1415

    CAS  PubMed  Google Scholar 

  33. Sidenius N, Blasi F (2003) The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 22:205–222

    Article  CAS  PubMed  Google Scholar 

  34. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  35. Sinicrope FA, Ruan SB, Cleary KR, Stephens LC, Lee JJ, Levin B (1995) bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res 55:237–241

    CAS  PubMed  Google Scholar 

  36. Steinmetzer T, Schweinitz A, Sturzebecher A, Donnecke D, Uhland K, Schuster O, Steinmetzer P, Muller F, Friedrich R, Than ME, Bode W, Sturzebecher J (2006) Secondary amides of sulfonylated 3-amidinophenylalanine. New potent and selective inhibitors of matriptase. J Med Chem 49:4116–4126

    Article  CAS  PubMed  Google Scholar 

  37. Takeuchi T, Shuman MA, Craik CS (1999) Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A 96:11054–11061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tanimoto H, Underwood LJ, Shigemasa K, Parmley TH, Wang Y, Yan Y, Clarke J, O’Brien TJ (1999) The matrix metalloprotease pump-1 (MMP-7, Matrilysin): a candidate marker/target for ovarian cancer detection and treatment. Tumour Biol 20:88–98

    Article  CAS  PubMed  Google Scholar 

  39. Torzewski M, Sarbia M, Verreet P, Dutkowski P, Heep H, Willers R, Gabbert HE (1997) Prognostic significance of urokinase-type plasminogen activator expression in squamous cell carcinomas of the esophagus. Clin Cancer Res 3:2263–2268

    CAS  PubMed  Google Scholar 

  40. Tsai WC, Chao YC, Lee WH, Chen A, Sheu LF, Jin JS (2006) Increasing EMMPRIN and matriptase expression in hepatocellular carcinoma: tissue microarray analysis of immunohistochemical scores with clinicopathological parameters. Histopathology 49:388–395

    Article  PubMed  Google Scholar 

  41. Uhland K (2006) Matriptase and its putative role in cancer. Cell Mol Life Sci 63:2968–2978

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) and grant funded by the Korea Government (MEST) (no. 2012–0001590) and Samsung Biomedical Research Institute grant “GL1B30411.”

This work is also supported by Inha University Research Grant and the Korea Healthcare Technology R&D Project (A111927), Ministry of Health & Welfare to M.G.K.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moon Gyo Kim or Seok-Hyung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, S.Y., Kim, K.Y., Lee, N.K. et al. Overexpression of matriptase correlates with poor prognosis in esophageal squamous cell carcinoma. Virchows Arch 464, 19–27 (2014). https://doi.org/10.1007/s00428-013-1504-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-013-1504-3

Keywords

Navigation