Skip to main content

Advertisement

Log in

ATG9A overexpression is associated with disease recurrence and poor survival in patients with oral squamous cell carcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

ATG9A is an integral membrane protein required for autophagosome formation and a membrane carrier in the autophagy pathways. The present study was designed to investigate the expression of ATG9A in oral squamous cell carcinoma (OSCC). Clinically annotated tumor specimens from 90 patients with OSCC were subjected to immunohistochemistry using an antibody against ATG9A and immunoreactivity was scored using an immunoreactivity score (IRS). Scores were compared with clinical and pathologic data to assess association with outcome. Overexpression of ATG9A was defined as an IRS of ≥9 by receiver operating characteristics curve analysis and was identified in 25 (28 %) of 90 cases. ATG9A overexpression was associated with disease recurrence and overall survival (OS) in both univariate (p = 0.030 and 0.025, respectively) and multivariate (p = 0.026 and 0.038, respectively) Cox analyses. Kaplan–Meier plots also showed that patients with ATG9A overexpression had shorter 3-year OS (p = 0.017) and time to recurrence (p = 0.021) than those with low ATG9A expression. These results suggest that the presence of ATG9A in the cytoplasm of tumor cells may be an independent biomarker for disease recurrence and survival in patients with OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA (1999) Cancer statistics, 1999. CA Cancer J Clin 49(8–31):31

    Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  3. Marino G, Lopez-Otin C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cellular and molecular life sciences : CMLS 61:1439–1454

    Article  PubMed  CAS  Google Scholar 

  4. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  PubMed  CAS  Google Scholar 

  5. Mizushima N (2007) Autophagy: process and function. Gene Dev 21:2861–2873

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981

    Article  PubMed  CAS  Google Scholar 

  7. Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen EL, Millen J, Goldfarb DS, Thumm M (2008) Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell 19:4492–4505

    Article  PubMed  CAS  Google Scholar 

  8. Sekito T, Kawamata T, Ichikawa R, Suzuki K, Ohsumi Y (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Gene Cell: Devoted Mol Cell Mech 14:525–538

    Article  CAS  Google Scholar 

  9. Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900

    Article  PubMed  CAS  Google Scholar 

  10. Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T, Nakabayashi K, Scherer SW (2005) Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem 280:18283–18290

    Article  PubMed  CAS  Google Scholar 

  11. Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Canc Therapeut 10:1533–1541

    Article  CAS  Google Scholar 

  12. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Canc Cell 10:51–64

    Article  CAS  Google Scholar 

  13. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Article  PubMed  CAS  Google Scholar 

  14. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nature reviews. Cancer 7:961–967

    PubMed  CAS  Google Scholar 

  15. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Gene Dev 25:1999–2010

    Article  PubMed  CAS  Google Scholar 

  16. Webber JL, Young AR, Tooze SA (2007) Atg9 trafficking in mammalian cells. Autophagy 3:54–56

    PubMed  CAS  Google Scholar 

  17. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 15:5308–5316

    Article  Google Scholar 

  18. Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558

    Article  PubMed  CAS  Google Scholar 

  19. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322

    Article  PubMed  CAS  Google Scholar 

  20. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Investig 117:326–336

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Fan Z (2010) The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 complex. Canc Res 70:5942–5952

    Article  CAS  Google Scholar 

  22. Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM, Rabinowich H (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283:19665–19677

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei-Yi Chu or Chee-Yin Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, JY., Hsi, E., Huang, YC. et al. ATG9A overexpression is associated with disease recurrence and poor survival in patients with oral squamous cell carcinoma. Virchows Arch 463, 737–742 (2013). https://doi.org/10.1007/s00428-013-1482-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-013-1482-5

Keywords

Navigation