Skip to main content

Advertisement

Log in

Chromophobe renal cell carcinoma—chromosomal aberration variability and its relation to Paner grading system: an array CGH and FISH analysis of 37 cases

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Genetically, chromophobe renal cell carcinoma (ChRCC) is characterized by multiple chromosomal changes, especially losses. The most common losses include chromosomes 1, 2, 6, 10, 13, 17, and 21. The Fuhrman grading system lacks prognostic relevance for ChRCC, and recently, a new grading system for ChRCC was proposed by Paner. The objective of this study was to map the spectrum of chromosomal aberrations (extent and location) in a large cohort of ChRCCs and relate these findings to the Paner grading system (PGS). A large cohort of ChRCC was reviewed and graded according to the PGS. All the cases were reevaluated and separated into groups according to their PGS. The final study set was 37 patients. ChRCCs were divided into PG 1–3, sarcomatoid, and aggressive groups. “Aggressive ChRCCs” were designated cases with known metastatic activity, local recurrence, aggressive growth to the adjacent organs, or invasive growth into the renal sinus (with/without angioinvasion). Sarcomatoid tumors were divided into their epithelial and sarcomatoid component (further molecular genetic analyses were performed separately). Array comparative genome hybridization and/or fluorescence in situ hybridization analysis was applied to 42 samples from the 37 cases. Multiple losses, as well as gains, were detected in different chromosomes. Regardless of the PGS groups, the most frequently detected losses involved chromosomes 1 (27/37), 2 (26/37), 6 (23/37), 10 (26/37), 13 (19/37), and 17 (24/37). Loss of chromosome 21 was found in 12/37 cases. The most frequently detected gains were found on chromosomes 4 (22/37), 7 (24/37), 15 (20/37), 19 (22/37), and 20 (21/37). Cluster analysis showed that there is no relation between PGS and particular pattern of chromosomal changes (losses or gains) in ChRCCs. Conclusions are as follows: (1) ChRCCs showed a significantly broader spectrum of chromosomal aberrations than previously recognized. While previously published chromosomal losses were found in our cohort, gains of multiple chromosomes were also identified in a high percentage. The most frequently detected gains involved chromosomes 4, 7, 15, 19, and 20. (2) There is no relation between chromosomal numerical changes and Paner grading system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thoenes W, Stoerkel S, Rumpelt HJ (1985) Human chromophobe cell carcinoma. Virchows Arch (B) 48:207–17

    Article  CAS  Google Scholar 

  2. Thoenes W, Storkel S, Rumpelt HJ et al (1988) Chromophobe cell renal carcinoma and its variants—report on 32 cases. J Pathol 155:277–87

    Article  PubMed  CAS  Google Scholar 

  3. Amin MB, Paner GP, Alvarado-Cabrero I, Young AN, Stricker HJ, Lyles RH, Moch H (2008) Chromophobe renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters on 145 cases. Am J Surg Pathol 32:1822–34

    Article  PubMed  Google Scholar 

  4. Fuhrman SA, Lasky LC, Limas C (1982) Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 6:655–63

    Article  PubMed  CAS  Google Scholar 

  5. Paner GP, Amin MB, Alvarado- Cabrero I, Young AN, Stricker HJ, Moch H, Lyles RH (2010) A novel tumor grading scheme for chromophobe renal cell carcinoma. Prognostic utility and comparison with Fuhrman nuclear grade. Am J Surg Pathol 10:1233–39

    Article  Google Scholar 

  6. Perez-Pedrosa A, Ortiz-Rey JA, Lorenzo-Mahía Y, Iglesias-Rodriguez B, Peteiro-Cancelo A, Gonzalez-Carrero JY (2012) Reproducibilidad interobservador de un sistema de grado para el carcinoma de celulas renales tipo cromofobo. Actas Urol Esp. doi: http://dx.doi.org/10.1016/j.acuro.2012.04.005

  7. Cheville JC, Lohse CM, Sukov WR, Thompson RH, Leibovich BC (2012) Chromophobe renal cell carcinoma: the impact or tumour grade on outcome. Am J Surg Pathol 36:851–56

    Article  PubMed  Google Scholar 

  8. Alimchandani M, Neira de Paz C, Williams S, Lara-Otero K, Linehan WM, Merino MJ (2013) Aggressive variants of chromophobe renal cell carcinoma: importance of recognition and grading. Mod Pathol Suppl 2:192A–794

    Google Scholar 

  9. Bugert P, Kovacs G (1996) Molecular differential diagnosis of renal cell carcinoma by microsatellite analysis. Am J Pathol 149:2081–88

    PubMed  CAS  Google Scholar 

  10. Brunelli M, Eble JN, Zhang S, Martignoni G, Delahunt B, Cheng L (2005) Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10 and 17 and this pattern of genetic abnormality is not present in oncocytoma. Mod Pathol 18:161–69

    Article  PubMed  CAS  Google Scholar 

  11. Speicher MR, Schoel B, du Manoir S, Schröck E, Ried T, Cremer T, Störkel S, Kovacs A, Kovacs G (1994) Specific loss of chromosomes 1, 2, 6, 10, 13, 17 and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridisation. Am J Pathol 145:356–64

    PubMed  CAS  Google Scholar 

  12. Brunelli M, Delahunt B, Gobbo S, Tardanico R, Eccher A, Bersani S, Cossu-Rocca P, Parolini C, Balzarini P, Menestrina F, Cheng L, Eble JN, Martignoni G (2010) Diagnostic usefulness of fluorescent cytogenetics in differentiating chromophobe renal cell carcinoma from renal oncocytoma. A validation study combining metaphase and interphase analyses. Am J Clin Pathol 133:116–26

    Article  PubMed  Google Scholar 

  13. Eble JN, Sauter G, Epstein JI, Sesterhenn IA (2004) Tumours of the urinary system and male genital organs. World Health Organisation Classification of Tumours. IARC, Lyon

    Google Scholar 

  14. Hagenkord JM, Gatalica Z, Jonasch E, Monzon FA (2011) Clinical genomics of renal epithelial tumors. Cancer Genetics 204:285–97

    Article  PubMed  CAS  Google Scholar 

  15. Brunelli M, Gobbo S, Cossu-Rocca P, Cheng L, Hes O, Delahunt B, Pea M, Bonetti F, Mina MM, Ficarra V, Chilosi M, Eble JN, Menestrina F, Martignoni G (2007) Chromosomal gains in the sarcomatoid transformation of chromophobe renal cell carcinoma. Mod Pathol 20:303–9

    Article  PubMed  CAS  Google Scholar 

  16. Tan M-H, Wong CF, Tan HL, Yang XJ, Ditlev J, Matsuda D, Khoo SK, Sugimura J, Fujioka T, Furge KA, Kort E, Giraud S, Ferlicot S, Vielh P, Amsellem-Ouazana D, Debré B, Flam T, Thiounn N, Zerbib M, Benoît G, Droupy S, Molinié V, Vieillefond A, Tan PH, Richard S, Teh BT (2010) Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma. BMC Cancer 10:196

    Article  PubMed  Google Scholar 

  17. Vieira J, Henrique R, Ribeiro FR, Barros-Silva JD, Peixoto A, Santos C, Pinheiro M, Costa VL, Soares MJ, Oliveira J, Jerónimo C, Teixeira MR (2010) Feasibility of differential diagnosis of kidney tumors by comparative genomic hybridization of fine needle aspiration biopsies. Genes Chromosom Cancer 49:935–47

    Article  PubMed  CAS  Google Scholar 

  18. Kim HJ, Shen SS, Ayala AG, Ro JY, Truong LD, Alvarez K, Bridge JA, Gatalica Z, Hagenkord JM, Gonzalez-Berjon JM, Monzon FA (2009) Virtual-karyotyping with SNP microarrays in morphologically challenging renal cell neoplasms: a practical and useful diagnostic modality. Am J Surg Pathol 33:1276–86

    Article  PubMed  Google Scholar 

  19. Yokomizo A, Yamamoto K, Furuno K, Shiota M, Tatsugami K, Kuroiwa K, Naito S (2010) Histopathologic subtype-specific genomic profiles of renal cell carcinomas identified by high-resolution whole-genome single nucleotide polymorphism array analysis. Oncology Letters 1:1073–78

    Article  PubMed  Google Scholar 

  20. Meyer PN, Cao Y, Jacobson K, Krausz T, Flanigan RC, Picken MM (2008) Chromosome 1 analysis in chromophobe renal cell carcinomas with tissue microarray (TMA)-facilitated fluorescence in situ hybridization (FISH) demonstrates loss of 1p/1 which is also present in renal oncocytomas. Diagn Mol Pathol 17:141–44

    Article  PubMed  CAS  Google Scholar 

  21. Akthar M, Chantziantoniou N (1999) Quantitative image cell analysis of cytologic smears for DNA ploidy in renal parenchymal neoplasms. Diagn Cythopathol 21:223–29

    Article  Google Scholar 

  22. Kovacs A, Kovacs G (1992) Low chromosome number in chromophobe renal cell carcinomas. Genes Chromosom Cancer 4(3):267–68

    Article  PubMed  CAS  Google Scholar 

  23. Yusenko YV, Kuiper RP, Boethe T, Ljungberg B, van Kessel G, Kovacs G (2009) High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer 9:152

    Article  PubMed  Google Scholar 

  24. Kuroda N, Tamura M, Hes O, Michal M, Shuin T, Toi M, Hayashi Y, Lee GH (2011) Chromophobe renal cell carcinoma with prominent lymph node metastasis and polysomy of chromosome 21: poorly differentiated form or “presarcomatoid” form? Med Mol Morphol 44(3):168–73

    Article  PubMed  Google Scholar 

  25. Gunawan B, Bergmann F, Braun S, Hemmerlein B, Ringert RH, Jakse G, Füzesi L (1999) Polyploidization and losses of chromosomes 1, 2, 6, 10, 13, and 17 in three cases of chromophobe renal cell carcinomas. Cancer Genet Cytogenet 110:57–61

    Article  PubMed  CAS  Google Scholar 

  26. Verdofer I, Hobisch A, Hittmair A, Duba HC, Bartsch G, Utermann G, Erdel M (1999) Cytogenetic characterization of 22 human renal cell tumors in relation to a histopathological classification. Cancer Genet Cytogenet 111:61–70

    Article  Google Scholar 

  27. Bugert P, Gaul C, Weber K, Herbers J, Akhtar M, Ljungberg B, Kovacs G (1997) Specific genetic changes of diagnostic importance in chromophobe renal cell carcinoma. Lab Invest 76:203–8

    PubMed  CAS  Google Scholar 

  28. Schwerdtle RF, Storkel S, Neuhaus C, Bauch H, Weidt E, Brenner W, Hohenfellner R, Huber C, Decker HJ (1996) Allelic losses at chromosomes 1p, 2p, 6p, 10p, 13q, 17p, and 21q significantly correlate with the chromophobe subtype of renal cell carcinoma. Cancer Res 56:2927–30

    PubMed  CAS  Google Scholar 

  29. Iqbal MA, Akhtar M, Ali MA (1996) Cytogenetic findings in renal cell carcinoma. Hum Pathol 27:949–54

    Article  PubMed  CAS  Google Scholar 

  30. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, García-Sanz R, van Krieken JH, Droese J, González D, Bastard C, White HE, Spaargaren M, González M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–317

    Article  PubMed  Google Scholar 

  31. Petersson F, Vaněček T, Michal M, Martignoni G, Brunelli M, Halbhuber Z, Spagnolo D, Kuroda N, Yang X, Cabrero IA, Hora M, Branžovský J, Trivunic S, Kacerovská D, Steiner P, Hes O (2012) A distinctive translocation carcinoma of the kidney; “rosette forming”, t(6;11), HMB45-positive renal tumor: a histomorphologic, immunohistochemical, ultrastructural, and molecular genetic study of 4 cases. Hum Pathol 43(5):726–36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Charles University Research Fund (project number P36), by the project CZ.1.05/2.1.00/03.0076 from the European Regional Development Fund, and by a grant from the Charles University (SVV 6805).

Conflict of interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Hes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperga, M., Martinek, P., Vanecek, T. et al. Chromophobe renal cell carcinoma—chromosomal aberration variability and its relation to Paner grading system: an array CGH and FISH analysis of 37 cases. Virchows Arch 463, 563–573 (2013). https://doi.org/10.1007/s00428-013-1457-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-013-1457-6

Keywords

Navigation