Skip to main content

Advertisement

Log in

Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Promoter hypermethylation has been shown to be a common mechanism for inactivation of tumor suppressor genes in breast cancer. The aim of this study was to investigate the prevalence of Slit2 promoter hypermethylation in both the tumor and serum samples of breast cancer patients with ductal carcinoma in situ (DCIS) or invasive breast carcinoma (IBC). The methylation status of Slit2 was investigated in 210 tissue samples (15 breast with no pathological findings, 26 DCIS, and 169 IBC samples) and 123 corresponding serum samples (15 breast with no pathological findings, 26 DCIS, and 82 IBC samples) using methylation-specific polymerase chain reaction. Immunohistochemical staining for Slit2 was also performed using tissue microarray blocks to determine whether Slit2 promoter hypermethylation correlated with loss of Slit2 expression. Slit2 promoter hypermethylation was not detected in breast tissue and serum samples from patients with no pathological findings. DCIS or IBC showed a statistically higher frequency of Slit2 promoter hypermethylation compared to breast with no pathological findings in both the tissue and serum samples; however, there were no statistically significant differences between DCIS and IBC samples. Similar Slit2 promoter hypermethylation patterns were seen in the tissue samples and corresponding serum specimens (p < 0.001). Slit2 promoter hypermethylation was associated with loss of Slit2 expression. These results suggest that Slit2 promoter hypermethylation appears to be responsible for functionally silencing Slit2 expression. Slit2 promoter hypermethylation may be considered as a possible serum marker for early detection of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol Suppl 1:4–11

    Article  Google Scholar 

  2. Brooks JD, Weinstein M, Lin X et al (1998) CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol Biomarkers Prev 7:531–536

    PubMed  CAS  Google Scholar 

  3. Lamy A, Sesboue R, Bourguignon J et al (2002) Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. Int J Cancer 100:189–193

    Article  PubMed  CAS  Google Scholar 

  4. Kim JH, Choi YD, Lee JS et al (2010) Assessment of DNA methylation for the detection of cervical neoplasia in liquid-based cytology specimens. Gynecol Oncol 116:99–104

    Article  PubMed  CAS  Google Scholar 

  5. Anker P, Mulcahy H, Chen XQ et al (1999) Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 18:65–73

    Article  PubMed  CAS  Google Scholar 

  6. Duffy MJ, Napieralski R, Martens JW et al (2009) Methylated genes as new cancer biomarkers. Eur J Cancer 45:335–346

    Article  PubMed  CAS  Google Scholar 

  7. Wajed SA, Laird PW, DeMeester TR (2001) DNA methylation: an alternative pathway to cancer. Ann Surg 234:10–20

    Article  PubMed  CAS  Google Scholar 

  8. Momparler RL, Bovenzi V (2001) DNA methylation and cancer. J Cell Physiol 183:145–154

    Article  Google Scholar 

  9. Lee JS, Lo PK, Fackler MJ et al (2007) A comparative study of Korean with Caucasian breast cancer reveals frequency of methylation in multiple genes correlates with breast cancer in young, ER, PR-negative breast cancer in Korean women. Cancer Biol Ther 6:1114–1120

    Article  PubMed  CAS  Google Scholar 

  10. Dulaimi E, Hillinck J, Ibanez de Caceres I et al (2004) Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res 10:6189–6193

    Article  PubMed  CAS  Google Scholar 

  11. Hoque MO, Feng Q, Toure P et al (2006) Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol 24:4262–4269

    Article  PubMed  CAS  Google Scholar 

  12. Mirza S, Sharma G, Prasad CP et al (2007) Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci 81:280–287

    Article  PubMed  CAS  Google Scholar 

  13. Lee JS, Fackler MJ, Teo WW et al (2008) Quantitative promoter hypermethylation profiles of ductal carcinoma in situ in North American and Korean women: Potential applications for diagnosis. Cancer Biol Ther 7:1398–1406

    PubMed  CAS  Google Scholar 

  14. Kim JH, Shin MH, Kweon SS et al (2010) Evaluation of promoter hypermethylation detection in serum as a diagnostic tool for breast carcinoma in Korean women. Gynecol Oncol 118:176–181

    Article  PubMed  CAS  Google Scholar 

  15. Yuan W, Zhou L, Chen JH et al (1999) The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev Biol 212:290–306

    Article  PubMed  CAS  Google Scholar 

  16. Brose K, Bland KS, Wang KH et al (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    Article  PubMed  CAS  Google Scholar 

  17. Wu JY, Feng L, Park HT et al (2001) The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410:948–952

    Article  PubMed  CAS  Google Scholar 

  18. Stein E, Tessier-Lavigne M (2001) Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291:1928–1938

    Article  PubMed  CAS  Google Scholar 

  19. Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675

    Article  PubMed  CAS  Google Scholar 

  20. Wu W, Wong K, Chen J et al (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400:331–333

    Article  PubMed  CAS  Google Scholar 

  21. Prasad A, Qamri Z, Wu J et al (2007) Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells. J Leukoc Biol 82:465–476

    Article  PubMed  CAS  Google Scholar 

  22. Dallol A, Da Silva NF, Viacava P et al (2002) SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 62:5874–5880

    PubMed  CAS  Google Scholar 

  23. Marlow R, Strickland P, Lee JS et al (2008) SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res 68:7819–7827

    Article  PubMed  CAS  Google Scholar 

  24. Dallol A, Krex D, Hesson L et al (2003) Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 22:4611–4616

    Article  PubMed  CAS  Google Scholar 

  25. Dallol A, Morton D, Maher ER et al (2003) Latif F. SLIT2 axon guidance molecule is frequently inactivated in colorectal cancer and suppresses growth of colorectal carcinoma cells. Cancer Res 63:1054–1058

    PubMed  CAS  Google Scholar 

  26. Astuti D, Da Silva NF, Dallol A et al (2004) SLIT2 promoter methylation analysis in neuroblastoma, Wilms’ tumour and renal cell carcinoma. Br J Cancer 90:515–521

    Article  PubMed  CAS  Google Scholar 

  27. Narayan G, Goparaju C, Arias-Pulido H et al (2006) Promoter hypermethylation-mediated inactivation of multiple Slit–Robo pathway genes in cervical cancer progression. Mol Cancer 15:5–16

    Google Scholar 

  28. Dunwell TL, Dickinson RE, Stankovic T et al (2009) Frequent epigenetic inactivation of the SLIT2 gene in chronic and acute lymphocytic leukemia. Epigenetics 4:265–269

    Article  PubMed  CAS  Google Scholar 

  29. Jin J, You H, Yu B et al (2009) Epigenetic inactivation of SLIT2 in human hepatocellular carcinomas. Biochem Biophys Res Commun 379:86–91

    Article  PubMed  CAS  Google Scholar 

  30. Sharma G, Mirza S, Prasad CP et al (2007) Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci 80:1873–1881

    Article  PubMed  CAS  Google Scholar 

  31. Tavasassoli FA, Devilee P (2003) Intraductal proliferative lesions. In: Tavassoli FA et al (eds) World Heath Organization Classification of Tumours. Pathology and Genetics of Tumours of the Breast and Female Genital Organs. IARC, Lyon, pp 63–73

    Google Scholar 

  32. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    Article  PubMed  CAS  Google Scholar 

  33. Alsayed Y, Ngo H, Runnels J et al (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109:2708–2717

    PubMed  CAS  Google Scholar 

  34. Baylin SB, Chen WY (2005) Aberrant gene silencing in tumor progression: implications for control of cancer. Cold Spring Harb Symp Quant Biol 70:427–433

    Article  PubMed  CAS  Google Scholar 

  35. Fackler MJ, McVeigh M, Evron E et al (2003) DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma. Int J Cancer 107:970–975

    Article  PubMed  CAS  Google Scholar 

  36. Lee JS (2007) GSTP1 promoter hypermethylation is an early event in breast carcinogenesis. Virchows Arch 450:637–642

    Article  PubMed  CAS  Google Scholar 

  37. Kim JH, Choi YD, Lee JS et al (2009) Borderline and malignant phyllodes tumors display similar promoter methylation profiles. Virchows Arch 455:469–475

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (CRI10056-1) from Chonnam National University Hospital Research Institute of Clinical Medicine.

We have no conflict of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Shin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, GE., Lee, K.H., Choi, Y.D. et al. Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients. Virchows Arch 459, 383–390 (2011). https://doi.org/10.1007/s00428-011-1143-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-011-1143-5

Keywords

Navigation