Skip to main content
Log in

Lysozyme-rich mucus metaplasia in duodenal crypts supersedes Paneth cells in celiac disease

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Lysozyme is as an innate enzyme with potent antibacterial properties found in Paneth cells in normal duodenal crypts. Since celiac disease concurs with an abnormal duodenal microbiota we explored the expression of lysozyme in this disease. Fifty-three duodenal biopsies were stained with anti-lysozyme: 15 had normal duodenal mucosa (NDM), 7 chronic active duodenitis (CAD), 3 borderline (BL), 17 subtotal villous atrophy (SVA) and 11 total villous atrophy (TVA). NDM showed lysozyme-positive Paneth cells arranged in “Indian file” in 93.3%. In contrast, lysozyme-positive mucus metaplasia in crypts (LPMMC) replacing Paneth cells was found in 71.5% in CAD, in 96.4% in SVA/TVA, and in 2 cases with B. In 19.3% cases with BL/SVA/TVA, LPMMC replaced all Paneth cells in all crypts in entire sections. In crypts and villi, lysozyme-positive goblet cells (LPGC) were found in 92.8%. Changes were more frequent in the duodenal bulb than in pars descendens. In normal duodenal mucosa, absorptive enterocytes and goblet cells migrate from stem cells upwards, while Paneth cells migrate downwards, towards the base of the crypts. In celiac disease stem cells seem to have been re-programmed, as the normal production of Paneth cells in the crypts was replaced by lysozyme-producing mucus cells. LPMMC and LPGC in celiac disease might mirror an antimicrobial adaptation of stem cells to signals generated by pathogenic duodenal bacteria. The molecular mechanism(s) behind the abrogation of Paneth cells in duodenal crypts and its substitution by LPMMC in celiac disease remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gramlich T, Petras R (2007) Small intestine/duodenum. In: Mills SE (ed) Histology for pathologists, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 613–616

    Google Scholar 

  2. He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36:1117–1121

    Article  PubMed  CAS  Google Scholar 

  3. de Santa BP, van den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60:1322–1332, Review

    Article  Google Scholar 

  4. Rubio CA, Nesi G (2003) A simple method to demonstrate normal and metaplastic Paneth cells in tissue sections. In Vivo 17:67–71

    PubMed  CAS  Google Scholar 

  5. Ayabe T, Ashida T, Kohgo Y, Kono T (2004) The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends Microbiol 12:394–398

    Article  PubMed  CAS  Google Scholar 

  6. Sundbom M, Elphick DA, Mahida YR, Cunliffe RN, Midtvedt T, Engstrand L, Rubio CA, Axelsson LG (2007) Alteration in human defensin-5 expression following gastric bypass surgery. J Clin Pathol 60:1029–1034

    Article  PubMed  CAS  Google Scholar 

  7. Di Sabatino A, Miceli E, Dhaliwal W, Biancheri P, Salerno R, Cantoro L, Vanoli A, De Vincenzi M, Blanco Cdel V, MacDonald TT, Corazza GR (2008) Distribution, proliferation, and function of Paneth cells in uncomplicated and complicated adult celiac disease. Am J Clin Pathol 130:34–42

    Article  PubMed  Google Scholar 

  8. Dewar DH, Ciclitira PJ (2005) Clinical features and diagnosis of celiac disease. Gastroenterology 128(Suppl 1):S19–24, Review

    Article  PubMed  Google Scholar 

  9. Högberg L, Stenhammar L (2009) Celiac disease: diagnosis criteria in young children. Nat Rev Gastroenterol Hepatol 6:447–448

    Article  PubMed  Google Scholar 

  10. Ivarsson A, Högberg L, Stenhammar L, Swedish Childhood Coeliac Disease Working Group (2010) The Swedish Childhood Coeliac Disease Working Group after 20 years: history and future. Acta Paediatr 99:1429–1431

    Article  PubMed  CAS  Google Scholar 

  11. Myléus A, Ivarsson A, Webb C, Danielsson L, Hernell O, Högberg L, Karlsson E, Lagerqvist C, Norström F, Rosén A, Sandström O, Stenhammar L, Stenlund H, Wall S, Carlsson A (2009) Celiac disease revealed in 3% of Swedish 12-year-olds born during an epidemic. J Pediatr Gastroenterol Nutr 49:170–176

    Article  PubMed  Google Scholar 

  12. Sánchez E, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2010) Intestinal Bacteroides species associated with coeliac disease. J Clin Pathol 63:1105–1111

    Article  PubMed  Google Scholar 

  13. Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, Longhi C, Maiella G, Cucchiara S, Conte MP (2010) A distinctive ‘microbial signature’ in celiac pediatric patients. BMC Microbiol 10:175–179

    Article  PubMed  Google Scholar 

  14. Forsberg G, Fahlgren A, Hörstedt P, Hammarström S, Hernell O, Hammarström ML (2004) Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol 99:894–904

    Article  PubMed  Google Scholar 

  15. Ou G, Hedberg M, Hörstedt P, Baranov V, Forsberg G, Drobni M, Sandström O, Wai SN, Johansson I, Hammarström ML, Hernell O, Hammarström S (2009) Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am J Gastroenterol 104:3058–3067

    Article  PubMed  Google Scholar 

  16. Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc Roy Soc Sec B 93:306–317

    Article  CAS  Google Scholar 

  17. Yoshimura K, Toibana A, Nakahama K (1988) Human lysozyme: sequencing of a cDNA, and expression and secretion by Saccharomyces cerevisiae. Biochem Biophys Res Commun 150:794–801

    Article  PubMed  CAS  Google Scholar 

  18. Peters C, Kruse U, Pollwein R, Grzeschik K, Sippel (1989) The human lysozyme gene. Sequence organization and chromosomal localization. Eur J Bioch 182:507–512

    Article  CAS  Google Scholar 

  19. Wehkamp J, Chu H, Shen B, Feathers RW, Kays RJ, Lee SK, Bevins CL (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580:5344–5350

    Article  PubMed  CAS  Google Scholar 

  20. Saito H, Kasajima T, Masuda A, Imai Y, Ishikawa M (1988) Lysozyme localization in human gastric and duodenal epithelium. An immune-cytochemical study. Cell Tissue Res 251:307–313

    Article  PubMed  CAS  Google Scholar 

  21. Rubio CA, Befrits R (2009) Increased lysozyme expression in gastric biopsies with intestinal metaplasia and pseudopyloric metaplasia. Int J Clin Exp Med 2:248–253

    PubMed  Google Scholar 

  22. Rubio CA, Lörinc (2011) Lysozyme is upregulated in Barrett’s mucosa. Histopathology (in press)

  23. Tang Q, Wang L, Tao K, Ge C, Jing Li Y, Peng JC, Geng M (2006) Expression of polymeric immunoglobulin receptor mRNA and protein in human Paneth cells: Paneth cells participate in acquired immunity. Am J Gastroenterol 101:1625–1632

    Article  PubMed  CAS  Google Scholar 

  24. Rubio CA (2011) Lysozyme expression in microscopic colitis. J Clin Pathol (in press)

  25. Rubio CA (2003) Colorectal adenomas produce lysozyme. Anticancer Res 23:5165–5171

    PubMed  CAS  Google Scholar 

  26. Helmerhorst E, Zamakhchari M, Schuppan D, Oppenheim F (2010) Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity. PLoS One 5:13264–13267

    Article  Google Scholar 

  27. Hayat M, Cairns A, Dixon MF, O’Mahony S (2002) Quantitation of intraepithelial lymphocytes in human duodenum: what is normal? J Clin Pathol 55:393–394

    Article  PubMed  CAS  Google Scholar 

  28. Scoville DH, Sato T, He XC, Li L (2008) Current view: intestinal stem cells and signaling. Gastroenterology 134:849–864, Review

    Article  PubMed  CAS  Google Scholar 

  29. Rubio CA (2011) Putative stem cells in mucosas of the esophago-gastrointestinal tract. Chapter 10. In: Singh SR (ed) Stem cell, regenerative medicine and cancer. Nova Science Haupauge, NY, pp 281–310

    Google Scholar 

  30. Kosinski C, Stange DE, Xu C, Chan AS, Ho C, Yuen ST, Mifflin RC, Powell DW, Clevers H, Leung SY, Chen X (2010) Indian hedgehog regulates intestinal stem cell fate through epithelial–mesenchymal interactions during development. Gastroenterology 139:893–903

    Article  PubMed  CAS  Google Scholar 

  31. Barker N, van de Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22:1856–1864

    Article  PubMed  CAS  Google Scholar 

  32. Nakamura T, Tsuchiya K, Watanabe T (2007) Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J Gastroenterol 42:705–710

    Article  PubMed  CAS  Google Scholar 

  33. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    Article  PubMed  CAS  Google Scholar 

  34. Shroyer NF, Helmrath MA, Wang VY, Antalffy B, Henning SJ, Zoghbi HY (2007) Intestine-specific ablation of Mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132:2478–2488

    Article  PubMed  CAS  Google Scholar 

  35. VanDussen KL, Samuelson LC (2010) Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev Biol 346:215–223

    Article  PubMed  CAS  Google Scholar 

  36. Varnat F, Heggeler BB, Grisel P, Boucard N, Corthésy-Theulaz I, Wahli W, Desvergne B (2006) PPAR beta/delta regulates Paneth cell differentiation via controlling the hedgehog signaling pathway. Gastroenterology 131:538–553

    Article  PubMed  CAS  Google Scholar 

  37. Tanigawa Y, Yakura R, Komiya T (2007) The bHLH transcription factor Tcf12 (ME1) mRNA is abundantly expressed in Paneth cells of mouse intestine. Gene Expr Patterns 7:709–713

    Article  PubMed  CAS  Google Scholar 

  38. Babbin BA, Jesaitis AJ, Ivanov AI, Kelly D, Laukoetter M, Nava P, Parkos CA, Nusrat A (2007) Formyl peptide receptor-1 activation enhances intestinal epithelial cell restitution through phosphatidylinositol 3-kinase-dependent activation of Rac1 and Cdc42. J Immunol 179:8112–8121

    PubMed  CAS  Google Scholar 

  39. Peignon G, Durand A, Cacheux W, Ayrault O, Terris B, Laurent-Puig P, Shroyer NF, Van Seuningen I, Honjo T, Perret C, Romagnolo B (2011) Complex interplay between β-catenin signalling and Notch effectors in intestinal tumorigenesis. Gut 60:166–176

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio, C.A. Lysozyme-rich mucus metaplasia in duodenal crypts supersedes Paneth cells in celiac disease. Virchows Arch 459, 339–346 (2011). https://doi.org/10.1007/s00428-011-1129-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-011-1129-3

Keywords

Navigation