Skip to main content

Advertisement

Log in

Exploration of the APC/β-catenin (WNT) pathway and a histologic classification system for pulmonary artery intimal sarcoma. A study of 18 cases

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

APC, a tumor suppressor gene in the Wnt pathway, stabilizes β-catenin and controls cell growth. Mutation of APC or β-catenin leads to nuclear accumulation of β-catenin and transcription of cyclin D1/cyclin A. Pulmonary artery sarcoma (PAS) were studied by morphologic, immunohistochemical, and molecular genetic methods of the Wnt pathway. Eighteen cases were included: mean age 52 years, primary intraluminal location with typical clinical presentation. PAS were classified as epithelioid (n = 4) or malignant fibrous histiocytoma (MFH; spindled/pleomorphic, n = 4), myxofibrosarcoma (n = 8), and one each hemangiopericytoma-like or malignant inflammatory myofibroblastic tumor-like. The tumor cells demonstrated vimentin, focal actins, and rare focal desmin positivity. All but one were grade 2 or 3 by FNCLCC grading. Alteration in chromosome 5q21 (APC) was found in 4/14 PAS by LOH, mostly epithelioid-type; an MFH-type case demonstrated microsatellite instability (MSI) and nuclear β-catenin. Cyclin D1 was expressed in seven tumors, all myxofibrosarcoma-type. No mutations were detected in APC or β-catenin. In summary, PAS are predominantly intermediate grade myxofibrosarcoma in middle-aged males, and fatal in two-thirds of patients. Despite myofibroblastic phenotype, APC/β-catenin pathway changes are rare. Cyclin D1, only expressed in the myxofibrosarcoma-type, is likely transcribed via factors other than β-catenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alman BA, Li C, Pajerski ME, Diaz-Cano S, Wolfe HJ (1997) Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol 151:329–334

    PubMed  CAS  Google Scholar 

  2. Bhattacharya B, Dilworth HP, Iacobuzio-Donahue C, Ricci F, Weber K, Furlong MA, Fisher C, Montgomery E (2005) Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol 29:653–659

    Article  PubMed  Google Scholar 

  3. Bode-Lesniewska B, Zhao J, Speel EJ, Biraima AM, Turina M, Komminoth P, Heitz PU (2001) Gains of 12q13-14 and overexpression of mdm2 are frequent findings in intimal sarcomas of the pulmonary artery. Virchows Arch 438:57–65

    Article  PubMed  CAS  Google Scholar 

  4. Burke AP, Virmani R (1993) Sarcomas of the great vessels. A clinicopathologic study. Cancer 71:1761–1773

    Article  PubMed  CAS  Google Scholar 

  5. Cheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H, Alman BA (2002) beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci USA 99:6973–6978

    Article  PubMed  CAS  Google Scholar 

  6. Coindre JM, Trojani M, Contesso G, David M, Rouesse J, Bui NB, Bodaert A, De Mascarel I, De Mascarel A, Goussot JF (1986) Reproducibility of a histopathologic grading system for adult soft tissue sarcoma. Cancer 58:306–309

    Article  PubMed  CAS  Google Scholar 

  7. Davies SM, Snover DC (1994) Frequent polymorphism in exon 15 of the adenomatous polyposis coli gene. Hum Genet 93:329–330

    Article  PubMed  CAS  Google Scholar 

  8. Goldblum JR, Rice TW (1995) Epithelioid angiosarcoma of the pulmonary artery. Hum Pathol 26:1275–1277

    Article  PubMed  CAS  Google Scholar 

  9. Hottenrott G, Mentzel T, Peters A, Schroder A, Katenkamp D (1999) Intravascular (“intimal”) epithelioid angiosarcoma: clinicopathological and immunohistochemical analysis of three cases. Virchows Arch 435:473–478

    Article  PubMed  CAS  Google Scholar 

  10. Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115:3977–3978

    Article  PubMed  CAS  Google Scholar 

  11. Huo L, Moran CA, Fuller GN, Gladish G, Suster S (2006) Pulmonary artery sarcoma: a clinicopathologic and immunohistochemical study of 12 cases. Am J Clin Pathol 125:419–424

    PubMed  Google Scholar 

  12. Iwao K, Miyoshi Y, Nawa G, Yoshikawa H, Ochi T, Nakamura Y (1999) Frequent beta-catenin abnormalities in bone and soft-tissue tumors. Jpn J Cancer Res 90:205–209

    PubMed  CAS  Google Scholar 

  13. Johansson L, Carlen B (1994) Sarcoma of the pulmonary artery: report of four cases with electron microscopic and immunohistochemical examinations, and review of the literature [see comments]. Virchows Arch 424:217–224

    Article  PubMed  CAS  Google Scholar 

  14. Kim SH, Lewis JJ, Brennan MF, Woodruff JM, Dudas M, Cordon-Cardo C (1998) Overexpression of cyclin D1 is associated with poor prognosis in extremity soft-tissue sarcomas. Clin Cancer Res 4:2377–2382

    PubMed  CAS  Google Scholar 

  15. Mandelstamm M (1923) Über primäre Neubildungen des Herzens. Virchows Arch 245:43–47

    Article  Google Scholar 

  16. Mayer E, Kriegsmann J, Gaumann A, Kauczor HU, Dahm M, Hake U, Schmid FX, Oelert H (2001) Surgical treatment of pulmonary artery sarcoma. J Thorac Cardiovasc Surg 121:77–82

    Article  PubMed  CAS  Google Scholar 

  17. McGlennen RC, Manivel JC, Stanley SJ, Slater DL, Wick MR, Dehner LP (1989) Pulmonary artery trunk sarcoma: a clinicopathologic, ultrastructural, and immunohistochemical study of four cases. Mod.Pathol. 2:486–494

    PubMed  CAS  Google Scholar 

  18. Mentzel T, Calonje E, Wadden C, Camplejohn RS, Beham A, Smith MA, Fletcher CD (1996) Myxofibrosarcoma. Clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol 20:391–405

    Article  PubMed  CAS  Google Scholar 

  19. Molendini L, Benassi MS, Magagnoli G, Merli M, Sollazzo MR, Ragazzini P, Gamberi G, Ferrari C, Balladelli A, Bacchini P, Picci P (1998) Prognostic significance of cyclin expression in human osteosarcoma. Int J Oncol 12:1007–1011

    PubMed  CAS  Google Scholar 

  20. Nonomura A, Kurumaya H, Kono N, Nakanuma Y, Ohta G, Terahata S, Matsubara F, Matsuda T, Asaka T, Nishino T (1988) Primary pulmonary artery sarcoma. Report of two autopsy cases studied by immunohistochemistry and electron microscopy, and review of 110 cases reported in the literature. Acta Pathol Jpn 38:883–896

    PubMed  CAS  Google Scholar 

  21. Parish JM, Rosenow EC III, Swensen SJ, Crotty TB (1996) Pulmonary artery sarcoma. Clinical features. Chest 110:1480–1488

    Article  PubMed  CAS  Google Scholar 

  22. Saito T, Oda Y, Itakura E, Shiratsuchi H, Kinoshita Y, Oshiro Y, Tamiya S, Hachitanda Y, Iwamoto Y, Tsuneyoshi M (2001) Expression of intercellular adhesion molecules in epithelioid sarcoma and malignant rhabdoid tumor. Pathol Int 51:532–542

    Article  PubMed  CAS  Google Scholar 

  23. Tam SW, Theodoras AM, Shay JW, Draetta GF, Pagano M (1994) Differential expression and regulation of Cyclin D1 protein in normal and tumor human cells: association with Cdk4 is required for Cyclin D1 function in G1 progression. Oncogene 9:2663–2674

    PubMed  CAS  Google Scholar 

  24. Tejpar S, Nollet F, Li C, Wunder JS, Michils G, dal Cin P, Van Cutsem E, Bapat B, van Roy F, Cassiman JJ, Alman BA (1999) Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 18:6615–6620

    Article  PubMed  CAS  Google Scholar 

  25. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  PubMed  CAS  Google Scholar 

  26. Van Damme H, Vaneerdeweg W, Schoofs E (1987) Malignant fibrous histiocytoma of the pulmonary artery. Ann Surg 205:203–207

    Article  PubMed  Google Scholar 

  27. Yashima K, Nakamori S, Murakami Y, Yamaguchi A, Hayashi K, Ishikawa O, Konishi Y, Sekiya T (1994) Mutations of the adenomatous polyposis coli gene in the mutation cluster region: comparison of human pancreatic and colorectal cancers. Int J Cancer 59:43–47

    Article  PubMed  CAS  Google Scholar 

  28. Zhao J, Roth J, Bode-Lesniewska B, Pfaltz M, Heitz PU, Komminoth P (2002) Combined comparative genomic hybridization and genomic microarray for detection of gene amplifications in pulmonary artery intimal sarcomas and adrenocortical tumors. Genes Chromosomes Cancer 34:48–57

    Article  PubMed  CAS  Google Scholar 

  29. Zhou Q, Hopp T, Fuqua SA, Steeg PS (2001) Cyclin D1 in breast premalignancy and early breast cancer: implications for prevention and treatment. Cancer Lett 162:3–17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the excellent technical support of Martina Waeber, Steffi Götz, Anja Vilberth, and Anne Pietryga-Krieger performing immunohistochemistry, LOH, and sequence analysis. We also thank Prof. E. Geissler for critical reading of the manuscript.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gaumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaumann, A., Bode-Lesniewska, B., Zimmermann, D.R. et al. Exploration of the APC/β-catenin (WNT) pathway and a histologic classification system for pulmonary artery intimal sarcoma. A study of 18 cases. Virchows Arch 453, 473–484 (2008). https://doi.org/10.1007/s00428-008-0671-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-008-0671-0

Keywords

Navigation