Skip to main content

Advertisement

Log in

Helicobacter pylori-infection-associated CpG island hypermethylation in the stomach and its possible association with Polycomb repressive marks

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Helicobacter pylori infection can induce CpG island (CGI) hypermethylation in gastric mucosa. Recently, genes occupied by Polycomb proteins in embryonic stem cells were shown to be vulnerable to aberrant DNA hypermethylation in cancers. To explore the relationship between H. pylori infection and DNA methylation changes in neoplastic and non-neoplastic stomach, we analyzed 25 CGIs and repetitive DNA elements from 82 chronic gastritis and 69 gastric carcinomas. Twenty-three CGIs showed significantly higher methylation levels in H. pylori-negative gastric carcinoma (n = 28) than in H. pylori-negative chronic gastritis (n = 39; P < 0.05), indicating cancer-associated methylation. Eight CGIs exhibited significantly higher methylation levels in H. pylori-positive chronic gastritis (n = 43) than in H. pylori-negative chronic gastritis (n = 39; P < 0.05). Six CGIs showed both cancer-associated and H. pylori-associated hypermethylation. Six (75%) of the eight H. pylori-associated hypermethylated genes contained at least one of three repressive marks (Suz12 occupancy, Eed occupancy, histone H3 K27 trimethylation), whereas 31% of the remaining cancer-associated hypermethylated genes had at least one mark. The findings suggest that H. pylori infection strongly induces CGI hypermethylation in gastric epithelial cells and that susceptibility to H. pylori-induced DNA hypermethylation may be determined by Polycomb repressive marks in stem or progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ando T, Kusugami K, Ohsuga M, Ina K, Shinoda M, Konagaya T, Sakai T, Imada A, Kasuga N, Nada T, Ichiyama S, Blaser MJ (1998) Differential normalization of mucosal interleukin-8 and interleukin-6 activity after Helicobacter pylori eradication. Infect Immun 66:4742–47

    PubMed  CAS  Google Scholar 

  2. Badouard C, Masuda M, Nishino H, Cadet J, Favier A, Ravanat JL (2005) Detection of chlorinated DNA and RNA nucleosides by H. pyloriLC coupled to tandem mass spectrometry as potential biomarkers of inflammation. J Chromatogr B Analyt Technol Biomed Life Sci 827:26–31

    Article  PubMed  CAS  Google Scholar 

  3. Cao R, Zhang Y (2004) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14:155–164

    Article  PubMed  CAS  Google Scholar 

  4. Chan AO, Chu KM, Huang C, Lam KF, Leung SY, Sun YW, Ko S, Xia HH, Cho CH, Hui WM, Lam SK, Rashid A (2007) Association between Helicobacter pylori infection and interleukin 1 beta polymorphism predispose to CpG island methylation in gastric cancer. Gut 56:595–597

    Article  PubMed  Google Scholar 

  5. Chan AO, Lam SK, Wong BC, Wong WM, Yuen MF, Yeung YH, Hui WM, Rashid A, Kwong YL (2003) Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut 52:502–506

    Article  PubMed  CAS  Google Scholar 

  6. Chan AO, Peng JZ, Lam SK, Lai KC, Yuen MF, Cheung HK, Kwong YL, Rashid A, Chan CK, Wong BC (2006) Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut 55:463–468

    Article  PubMed  CAS  Google Scholar 

  7. Cho NY, Kim BH, Choi M, Yoo EJ, Moon KC, Cho YM, Kim D, Kang GH (2007) Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol 211:269–277

    Article  PubMed  CAS  Google Scholar 

  8. Cravo M, Pinto R, Fidalgo P, Chaves P, Gloria L, Nobre-Leitao C, Costa Mira F (1996) Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut 39:434–438

    Article  PubMed  CAS  Google Scholar 

  9. Eads CA, Lord RV, Wickramasinghe K, Long TI, Kurumboor SK, Bernstein L, Peters JH, DeMeester SR, DeMeester TR, Skinner KA, Laird PW (2001) Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res 61:3410–3418

    PubMed  CAS  Google Scholar 

  10. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    Article  PubMed  CAS  Google Scholar 

  11. Ekstrom AM, Held M, Hansson LE, Engstrand L, Nyren O (2001) Helicobacter pylori in gastric cancer established by CagA immunoblot as a marker of past infection. Gastroenterology 121:784–791

    Article  PubMed  CAS  Google Scholar 

  12. Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM (2003) Predicting aberrant CpG island methylation. Proc Natl Acad Sci USA 100:12253–12258

    Article  PubMed  CAS  Google Scholar 

  13. Henderson JP, Byun J, Williams MV, Mueller DM, McCormick ML, Heinecke JW (2001) Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation. J Biol Chem 276:7867–7875

    Article  PubMed  CAS  Google Scholar 

  14. Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA, Munroe DJ, Farrar WL (2005) Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res 65:4673–4682

    Article  PubMed  CAS  Google Scholar 

  15. Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL (2001) Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J Biol Chem 276:39508–39511

    Article  PubMed  CAS  Google Scholar 

  16. IARC working group on the evaluation of carcinogenic risks to humans, schistosomes, liver flukes, Helicobacter pylori (1994) IARC monographs on the evaluation of carcinogenic risks to humans, vol 61. International Agency for Research on Cancer, Lyon, pp 1–241

    Google Scholar 

  17. Kang GH, Lee S, Cho NY, Gandamihardja T, Long TI, Weisenberger DJ, Campan M, Laird PW (2008) DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest 88:161–170

    Article  PubMed  CAS  Google Scholar 

  18. Kang GH, Lee S, Kim JS, Jung HY (2003) Profile of aberrant CpG island methylation along multistep gastric carcinogenesis. Lab Invest 83:519–526

    PubMed  CAS  Google Scholar 

  19. Kang GH, Shim YH, Jung HY, Kim WH, Ro JY, Rhyu MG (2001) CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res 61:2847–2851

    PubMed  CAS  Google Scholar 

  20. Karpf AR, Matsui S (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65:8635–8639

    Article  PubMed  CAS  Google Scholar 

  21. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E, Pikarski E, Young RA, Niveleau A, Cedar H, Simon I (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38:149–153

    Article  PubMed  CAS  Google Scholar 

  22. Kochanek S, Renz D, Doerfler W (1993) DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J 12:1141–1151

    PubMed  CAS  Google Scholar 

  23. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    Article  PubMed  CAS  Google Scholar 

  24. Leung WK, Man EP, Yu J, Go MY, To KF, Yamaoka Y, Cheng VY, Ng EK, Sung JJ (2006) Effects of Helicobacter pylori eradication on methylation status of E-cadherin gene in noncancerous stomach. Clin Cancer Res 12:3216–3221

    Article  PubMed  CAS  Google Scholar 

  25. Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M, Arii K, Kaneda A, Tsukamoto T, Tatematsu M, Tamura G, Saito D, Sugimura T, Ichinose M, Ushijima T (2006) High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12:989–995

    Article  PubMed  CAS  Google Scholar 

  26. Mihara M, Yoshida Y, Tsukamoto T, Inada K, Nakanishi Y, Yagi Y, Imai K, Sugimura T, Tatematsu M, Ushijima T (2006) Methylation of multiple genes in gastric glands with intestinal metaplasia: a disorder with polyclonal origins. Am J Pathol 169:1643–1651

    Article  PubMed  CAS  Google Scholar 

  27. Molofsky AV, Pardal R, Morrison SJ (2004) Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 16:700–707

    Article  PubMed  CAS  Google Scholar 

  28. Normark S, Nilsson C, Normark BH, Hornef MW (2003) Persistent infection with Helicobacter pylori and the development of gastric cancer. Adv Cancer Res 90:63–89

    Article  PubMed  Google Scholar 

  29. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    Article  PubMed  CAS  Google Scholar 

  30. Richardson B (2003) Impact of aging on DNA methylation. Aging Res Rev 2:245–261

    Article  CAS  Google Scholar 

  31. Rieder G, Merchant JL, Haas R (2005) Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 128:1229–1242

    Article  PubMed  CAS  Google Scholar 

  32. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    Article  PubMed  CAS  Google Scholar 

  33. Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J, Chen X, Waterland RA, Issa JP (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3:2023–2036

    Article  PubMed  CAS  Google Scholar 

  34. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856

    Article  PubMed  CAS  Google Scholar 

  35. Sugiyama A, Maruta F, Ikeno T, Ishida K, Kawasaki S, Katsuyama T, Shimizu N, Tatematsu M (1998) Helicobacter pylori infection enhances N-methyl-N-nitrosourea-induced stomach carcinogenesis in the Mongolian gerbil. Cancer Res 58:2067–2069

    PubMed  CAS  Google Scholar 

  36. Tamura G (2004) Promoter methylation status of tumor suppressor and tumor-related genes in neoplastic and non-neoplastic gastric epithelia. Histol Histopathol 19:221–228

    PubMed  CAS  Google Scholar 

  37. Ushijima T, Nakajima T, Maekita T (2006) DNA methylation as a marker for the past and future. J Gastroenterol 41:401–407

    Article  PubMed  CAS  Google Scholar 

  38. Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67:946–950

    Article  PubMed  CAS  Google Scholar 

  39. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418

    Article  PubMed  CAS  Google Scholar 

  40. Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T (2006) Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res 66:10517–10524

    Article  PubMed  CAS  Google Scholar 

  41. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M, Laird PW (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33:6823–6836

    Article  PubMed  CAS  Google Scholar 

  42. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    Article  PubMed  CAS  Google Scholar 

  43. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyeong Hoon Kang.

Additional information

Supported by the Korea Research Foundation Grant (MOEHRD; KRF-2005-041-E00081; G.H.K.) and by the second stage Brain Korea 21 Project.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 19 kb)

High resolution image file (TIF 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, E.J., Park, SY., Cho, NY. et al. Helicobacter pylori-infection-associated CpG island hypermethylation in the stomach and its possible association with Polycomb repressive marks. Virchows Arch 452, 515–524 (2008). https://doi.org/10.1007/s00428-008-0596-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-008-0596-7

Keywords

Navigation