Skip to main content

Advertisement

Log in

Prognostic significance of the Fas-receptor/Fas-ligand system in cervical squamous cell carcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

We studied whether Fas-receptor (Fas-R; CD95) expression, single-nucleotide polymorphisms (SNPs) in the Fas promoter region, and/or Fas-ligand (Fas-L) production could determine individual susceptibility to cervical cancer progression. The clinicopathologic features of 38 patients with cervical squamous carcinomas (22 stage I, 8 stage II, and 8 stage III+) were reviewed and related with: (a) Fas-R expression by immunohistochemistry; (b) Fas-R SNPs at -670 and -1377 locations by restriction fragment length polymorphism and DNA sequencing; and (c) Fas-L expression by immunohistochemistry. Overall and disease-free survival curves showed significant differences in relation to stage (p < 0.001). Fas-R was identified in 20 of 38 (52.6%) tumors without statistical differences in survival, stage, or Fas-L overproduction. Fas-R GG genotype was more common than expected in advanced tumors (p = 0.065). The Fas-R-1377A allele and AA genotype were unrelated with survival, stage, or Fas-R expression. Fas-L overproduction was detected in 20 of 38 (52.6%) tumors; it was more frequent in advanced-stage tumors and was inversely related to survival (p = 0.03) and decrease in host inflammatory response (p = 0.01). Fas-R expression by tumor cells seems unrelated to stage or lymphoid infiltrate. Tumor production of Fas-L may represent an attempt to destroy the host’s lymphocytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahlbom A, Lichtenstein P, Malmstrom H, Feychting M, Hemminki K, Pedersen NL (1997) Cancer in twins: genetic and nongenetic familial risk factors. J Natl Cancer Inst 89:287–293

    Article  PubMed  CAS  Google Scholar 

  2. Allen M, Lalantari M, Ylitalo N, Pettersson B, Hagmar B, Scheibenpflug L, Johansson B, Petterson U, Gyllensten U (1996) HLA DQ-DR haplotype and susceptibility to cervical carcinomaL indications of increased risk for development of cervical carcinoma in individuals infected with HPV 18. Tissue Antigens 48:32–37

    Article  PubMed  CAS  Google Scholar 

  3. Apple RJ, Erlich HA, Klitz W, Manos MM, Becker TM, Wheeler CM (1994) HLA DR-DQ associations with cervical carcinoma show papillomavirus-type specificity. Nat Genet 6:157–162

    Article  PubMed  CAS  Google Scholar 

  4. Boldrini L, Faviana P, Pistolesi F, Gisfredi S, Di Quirico D, Lucchi M, Mussi A, Angeletti CA, Baldinotti F, Fogli A, Simi P, Basolo F, Fontanini G (2001) Alterations of Fas (APO-1/CD 95) gene and its relationship with p53 in non small cell lung cancer. Oncogene 20:6632–6637

    Article  PubMed  CAS  Google Scholar 

  5. Butler LM, Hewett PJ, Butler WJ, Couled PA (1998) Down-regulation of fas gene expression in colon cancer is not a result of allelic loss or gene rearrangement. Br J Cancer 77:1454–1459

    PubMed  CAS  Google Scholar 

  6. Das H, Koizumi T, Sugimoto T, Chakraborty S, Ichimura T, Hasegawa K, Nishimura R (2000) Quantitation of Fas and Fas ligand gene expression in human ovarian, cervical and endometrial carcinomas using real-time quantitative RT-PCR. Br J Cancer 82:1682–1688

    Article  PubMed  CAS  Google Scholar 

  7. Dybikowska A, Sliwinski W, Emerich J, Podhajska AJ (2004) Evaluation of Fas gene promoter polymorphism in cervical cancer patients. Int J Mol Med 14:475–478

    PubMed  CAS  Google Scholar 

  8. Ellis JR, Keating PJ, Baird J, Hounsell EF, Renouf DV, Rowe M, Hopkins D, Duggan-Keen MF, Bartholomew JS, Young LS (1995) The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nature Med 1:464–470

    Article  PubMed  CAS  Google Scholar 

  9. Engelmark MT, Renkema KY, Gyllensten UB (2004) No evidence of the involvement of the Fas-670 promoter polymorphism in cervical cancer in situ. Int J Cancer 112:1084–1085

    Article  PubMed  CAS  Google Scholar 

  10. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair apoptosis in human autoimmune lymphoproliferative syndrome. Cell 81:935–946

    Article  PubMed  CAS  Google Scholar 

  11. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192

    Article  PubMed  CAS  Google Scholar 

  12. Huang QR, Morris D, Manolios N (1997) Identification and characterization of polymorphism’s in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol 34:577–582

    Article  PubMed  CAS  Google Scholar 

  13. Inazawa J, Itoh N, Abe T, Nagata S (1992) Assignment of the human Fas antigen gene (Fas) to 10q24.1. Genomics 14:821–822

    Article  PubMed  CAS  Google Scholar 

  14. Jones DL, Munger K (1996) Interactions of the human papillomavirus E7 protein with cell cycle regulators. Semin Cancer Biol 7:327–337

    Article  PubMed  CAS  Google Scholar 

  15. Kim JW, Lee CG, Park YG, Kim KS, Kim IK, Sohn YW, Min HK, Lee JM, Namkoong SE (2000) Combined analysis of germline polymorphism’s of p53, GSTM1, GSTT1, CYP1A1 and CYP2E1. Relation to the incidence rate of cervical carcinomas. Cancer 88:2082–2091

    Article  PubMed  CAS  Google Scholar 

  16. Kjellberg L, Hallmans G, Ahren AM, Johansson R, Bergman F, Wadell G, Angstrom T, Dillner J (2000) Smoking, diet, pregnancy and oral contraceptive use as risk factors for cervical intra-epithelial neoplasia in relation to human papillomavirus infection. Br J Cancer 82:1332–1338

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi A, Greenblatt RM, Anastos K, Minkoff H, Massad LS, Young M, Levine AM, Darragh TM, Weinberg V, Smith-McCune KK (2004) Functional attributes of mucosal immunity in cervical intraepithelial neoplasia. Cancer Res 64:6766–6774

    Article  PubMed  CAS  Google Scholar 

  18. Krammer DH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    Article  PubMed  CAS  Google Scholar 

  19. Lai HC, Lin WY, Lin YW, Chang CC, Yu MH, Chen CC, Chu TY (2005) Genetic polymorphism’s of FAS and FASL (CD95/CD95L) genes in cervical carcinogenesis: An analysis of haplotype and gene–gene interaction. Gynecol Oncol 99:113–118

    Article  PubMed  CAS  Google Scholar 

  20. Lai HC, Sytwu HK, Sun CA, Yu MH, Yu CP, Liu HS, Chang CC, Chu TY (2003) Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int J Cancer 103:221–225

    Article  PubMed  CAS  Google Scholar 

  21. Lee SH, Shin MS, Park WS, Kim SY, Dong SM, Pi JH, Lee HK, Kim HS, Jang JJ, Kim CS, Kim SH, Lee JY (1999) Alterations of Fas gene in transitional cell carcinomas of urinary bladder. Cancer Res 59:3068–3072

    PubMed  CAS  Google Scholar 

  22. Magnusson PK, Sparen P, Gyllensten UB (1999) Genetic link to cervical tumors. Nature 400:29–30

    Article  PubMed  CAS  Google Scholar 

  23. Mantovani F, Banks L (2001) The human papilloma virus E6 protein and its contribution to malignant progression. Oncogene 20:7874–7887

    Article  PubMed  CAS  Google Scholar 

  24. Matsue H, Kobayashi H, Hosokawa T, Akitaya T, Ohkawara A (1995) Keratinocytes constitutively express the Fas antigen that mediates apoptosis in IFN gamma-treated cultured keratinocytes. Arch Dermatol Res 287:315–320

    Article  PubMed  CAS  Google Scholar 

  25. Milde-Langosch K, Schreiber C, Becker G, Löning T, Stegner HE (1993) Human papillomavirus a detection in cervical adenocarcinomas by polymerase chain reaction. Hum Pathol 24:590–594

    Article  PubMed  CAS  Google Scholar 

  26. Moers C, Warskulat U, Müschen M, Even J, Niederacher D, Josien R, Koldovsky U, Beckmann MW, Häussinger D (1999) Regulation of CD95 (Apo-1/Fas) ligand and receptor expression in squamous-cell carcinoma by interferon-gamma and cisplatin. Int J Cancer 80:564–572

    Article  PubMed  CAS  Google Scholar 

  27. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders PJ, Meijer CJ, International Agency for Research on Cancer Multicenter Cervical Cancer Study Group (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527

    Article  PubMed  Google Scholar 

  28. Nguyen HH, Broker TR, Chow LT, Alvarez RD, Vu HL, Andrasi J, Brewer LR, Jin G, Mestecky J (2005) Immune response to human HPV in genital tract of women with cervical cancer. Ginecol Oncol 96:452–461

    Article  CAS  Google Scholar 

  29. Nishioka Y, Sagae S, Nishikawa A, Kudo R (2003) A relationship between Matrix metalloproteinase-1 (MMP-1) promoter polymorphism and cervical cancer progression. Cancer Lett 200:49–55

    Article  PubMed  CAS  Google Scholar 

  30. Parkin DM, Bray F, Ferlay J, Pisani P (2001) Estimating the world cancer burden: Globocan 2000. Int J Cancer 94:153–156

    Article  PubMed  CAS  Google Scholar 

  31. Peter ME, Krammer PH (2003) TheCD95(Apo-/Fas) DISC and beyond. Cell Death Differ 10:26–35

    Article  PubMed  CAS  Google Scholar 

  32. Pinti M, Troiano L, Nasi M, Moretti L, Monterastelli E, Mazzacani A, Mussi C, Ventura P, Olivieri F, Franceschi C, Salvioli G, Cossarizza A (2002) Genetic polymorphisms of Fas (CD95) and FasL (CD178) in human longevity: studies on centenarians. Cell Death Differ 9:431–438

    Article  PubMed  CAS  Google Scholar 

  33. Ramenghi U, Bonissoni S, Migliaretti G, DeFranco S, Bottarel F, Gambaruto C, DiFranco D, Priori R, Conti F, Dianzani I, Valesini G, Merletti F, Dianzani U (2000) Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune disease and cancer. Blood 95:3176–3182

    PubMed  CAS  Google Scholar 

  34. Reesink-Peters N, Hougardy BM, van den Heuvel FA, Ten Hoor KA, Hollema H, Boezen HM, de Vries EG, de Jong S, van der Zee AG (2005) Death receptors and ligands in cervical carcinogenesis: an immunohistochemical study. Gynecol Oncol 96:705–713

    Article  PubMed  CAS  Google Scholar 

  35. Sayama K, Yonehara S, Watanabe Y, Miki Y (1994) Expression of Fas antigen on keratinocytes in vivo and induction of apoptosis in cultured keratinocytes. J Invest Dermatol 103:330–334

    Article  PubMed  CAS  Google Scholar 

  36. Sheu BC, Hsu SM, Ho HN, Lin RH, Torng PL, Huang SC (1999) Reversed CD4/CD8 ratios of tumor-infiltrating lymphocytes are correlated with progression of human cervical carcinoma. Cancer 86:1537–1543

    Article  PubMed  CAS  Google Scholar 

  37. Shimonishi T, Isse K, Shibata F, Aburatani I, Tsuneyama K, Sabit H, Harada K, Miyazaki K, Nakanuma Y (2000) Up-regulation of Fas ligand at early stages and down regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance. Hepatology 32:761–769

    Article  PubMed  CAS  Google Scholar 

  38. Stanczuk GA, Sibanda EN, Perrey C, Chivara M, Pravica V, Hutchinson IV, Tswana SA (2001) Cancer of the uterine cervix may be significantly associated with gene polymorphism’s coding for increased IL10 production. Int J Cancer 94:792–794

    Article  PubMed  CAS  Google Scholar 

  39. Stanczuk GA, Tswana SA, Bergstrom S, Sibanda EN (2002) Polymorphism’s in codons 10 and 25 of TGF gene in patients with invasive squamous cell carcinoma of the uterine cervix. Eur J Immunogenet 29:417–421

    Article  PubMed  CAS  Google Scholar 

  40. Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH, Galle PR (1996) Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion? Nat Med 2:1361–1366

    Article  PubMed  CAS  Google Scholar 

  41. Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D (2004) Polymorphism’s of death pathway genes FAS in esophageal squamous-cell carcinoma. J Natl Cancer Inst 96:1030–1036

    Article  PubMed  CAS  Google Scholar 

  42. Trautmann A, Akdis M, Kleemann D, Altznauer F, Simon HU, Graeve T, Noll M, Brocker EB, Blaser K, Akdis CA (2000) T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest 106:25–35

    Article  PubMed  CAS  Google Scholar 

  43. Ueda M, Hung YC, Terai Y, Yamaguchi H, Saito J, Nunobiki O, Noda S, Ueki M (2005) Fas gene promoter -670 polymorphism (A/G) is associated with cervical carcinogenesis. Gynecol Oncol 98:129–133

    Article  PubMed  CAS  Google Scholar 

  44. Vidal D, Matias X, Alomar A (2004) Open study of the efficacy and mechanism of action of topical imiquimod in basal cell carcinoma. Clin Exp Dermatol 29:518–525

    Article  PubMed  CAS  Google Scholar 

  45. Waggoner SE (2003) Cervical cancer. Lancet 361:2217–2225

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Lerma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerma, E., Romero, M., Gallardo, A. et al. Prognostic significance of the Fas-receptor/Fas-ligand system in cervical squamous cell carcinoma. Virchows Arch 452, 65–74 (2008). https://doi.org/10.1007/s00428-007-0535-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-007-0535-z

Keywords

Navigation