Skip to main content

Advertisement

Log in

Cellular and tissue localization of globotriaosylceramide in Fabry disease

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The pathogenesis of Fabry disease is poorly understood. We used a variety of immunohistological techniques to localize globotriaosylceramide, the main glycolipid that accumulates in Fabry disease. Globotriaosylceramide immunoreactivity in a heterogenous pattern was present in all organs examined of a patient on long-term enzyme replacement therapy. In the brain, immmunopositivity was found only in the parahippocampal region. Globotriaosylceramide immunostaining was present in the cell membrane and cytoplasm of endothelial cells, even in the absence of lysosomal inclusions. In kidney tissue, globotriaosylceramide colocalized with lysosomal, endoplasmic reticulum, and nuclear markers. Pre- and postembedding immunogold electron microscopy of skin biopsies and untreated patient cultured skin fibroblasts confirmed the presence of globotriaosylceramide in the cell membrane, in various cytoplasmic structures, and in the nucleus. Control organ tissues and cultured fibroblasts from five unaffected subjects were uniformly negative for globotriaosylceramide by immunohistochemistry and immunogold electron microscopy. We conclude that a substantial amount of lysosomal and extralysosomal globotriaosylceramide immunoreactivity remains in cells and tissues even after years of enzyme replacement therapy in Fabry disease. These findings are crucial for the understanding of the disease mechanism and suggest the usefulness of immunostaining for globotriaosylceramide as a means to assess response to novel, specific therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Altarescu G, Moore DF, Pursley R, Campia U, Goldstein S, Bryant M, Panza JA, Schiffmann R (2001) Enhanced endothelium-dependent vasodilation in Fabry disease. Stroke 32:1559–1562

    PubMed  CAS  Google Scholar 

  2. Banikazemi M, Bultas J, Waldek S, Wilcox WR, Whitley CB, McDonald M, Finkel R, Packman S, Bichet DG, Warnock DG, Desnick RJ (2007) Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med 146:77–86

    PubMed  Google Scholar 

  3. Bendayan M, Nanci A, Kan FW (1987) Effect of tissue processing on colloidal gold cytochemistry. J Histochem Cytochem 35:983–996

    PubMed  CAS  Google Scholar 

  4. Bodary PF, Shen Y, Vargas FB, Bi X, Ostenso KA, Gu S, Shayman JA, Eitzman DT (2005) Alpha-galactosidase A deficiency accelerates atherosclerosis in mice with apolipoprotein E deficiency. Circulation 111:629–632

    Article  PubMed  CAS  Google Scholar 

  5. Brady R, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) Enzymatic defect in Fabry disease: ceramide trihexosidase deficiency. N Engl J Med 276:1163–1167

    Article  PubMed  CAS  Google Scholar 

  6. Brady RO, Schiffmann R (2000) Clinical features of and recent advances in therapy for Fabry disease. JAMA 284:2771–2775

    Article  PubMed  CAS  Google Scholar 

  7. d’Azzo A, Tessitore A, Sano R (2006) Gangliosides as apoptotic signals in ER stress response. Cell Death Differ 13:404–414

    Article  PubMed  CAS  Google Scholar 

  8. Desnick RJ, Ioannou YA, Eng CM (2001) a-Galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 3733–3774

    Google Scholar 

  9. Fukushima M, Tsuchiyama Y, Nakato T, Yokoi T, Ikeda H, Yoshida S, Kusumoto T, Itoh K, Sakuraba H (1995) A female heterozygous patient with Fabry’s disease with renal accumulation of trihexosylceramide detected with a monoclonal antibody. Am J Kidney Dis 26:952–955

    PubMed  CAS  Google Scholar 

  10. Futerman AH (2006) Intracellular trafficking of sphingolipids: relationship to biosynthesis. Biochim Biophys Acta 1758:1885–1892

    Article  PubMed  CAS  Google Scholar 

  11. Garner B, Priestman DA, Stocker R, Harvey DJ, Butters TD, Platt FM (2002) Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice. J Lipid Res 43:205–214

    PubMed  CAS  Google Scholar 

  12. Hogerkorp CM, Borrebaeck CA (2006) The human CD77- B cell population represents a heterogeneous subset of cells comprising centroblasts, centrocytes, and plasmablasts, prompting phenotypical revision. J Immunol 177:4341–4349

    PubMed  Google Scholar 

  13. Itoh K, Takenaka T, Nakao S, Setoguchi M, Tanaka H, Suzuki T, Sakuraba H (1996) Immunofluorescence analysis of trihexosylceramide accumulated in the hearts of variant hemizygotes and heterozygotes with Fabry disease. Am J Cardiol 78:116–117

    Article  PubMed  CAS  Google Scholar 

  14. Kacher Y, Futerman AH (2006) Genetic diseases of sphingolipid metabolism: pathological mechanisms and therapeutic options. FEBS Lett 580:5510–5517

    Article  PubMed  CAS  Google Scholar 

  15. Kanda A, Nakao S, Tsuyama S, Murata F, Kanzaki T (2000) Fabry disease: ultrastructural lectin histochemical analyses of lysosomal deposits. Virchows Arch 436:36–42

    Article  PubMed  CAS  Google Scholar 

  16. Kanekura T, Fukushige T, Kanda A, Tsuyama S, Murata F, Sakuraba H, Kanzaki T (2005) Immunoelectron-microscopic detection of globotriaosylceramide accumulated in the skin of patients with Fabry disease. Br J Dermatol 153:544–548

    Article  PubMed  CAS  Google Scholar 

  17. Kaye EM, Kolodny EH, Logigian EL, Ullman MD (1988) Nervous system involvement in Fabry's disease: clinicopathological and biochemical correlation. Ann Neurol 23:505–509

    Article  PubMed  CAS  Google Scholar 

  18. Khine AA, Firtel M, Lingwood CA (1998) CD77-dependent retrograde transport of CD19 to the nuclear membrane: functional relationship between CD77 and CD19 during germinal center B-cell apoptosis. J Cell Physiol 176:281–292

    Article  PubMed  CAS  Google Scholar 

  19. Kotani M, Kawashima I, Ozawa H, Ogura K, Ariga T, Tai T (1994) Generation of one set of murine monoclonal antibodies specific for globo-series glycolipids: evidence for differential distribution of the glycolipids in rat small intestine. Arch Biochem Biophys 310:89–96

    Article  PubMed  CAS  Google Scholar 

  20. Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  PubMed  CAS  Google Scholar 

  21. Lingwood CA (1999) Verotoxin/globotriaosyl ceramide recognition: angiopathy, angiogenesis and antineoplasia. Biosci Rep 19:345–354

    Article  PubMed  CAS  Google Scholar 

  22. Lloyd-Evans E, Pelled D, Riebeling C, Bodennec J, de-Morgan A, Waller H, Schiffmann R, Futerman AH (2003) Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J Biol Chem 278:23594–23599

    Article  PubMed  CAS  Google Scholar 

  23. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N et al (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529

    Article  PubMed  CAS  Google Scholar 

  24. Miyamoto D, Ueno T, Takashima S, Ohta K, Miyawaki T, Suzuki T, Suzuki Y (1997) Establishment of a monoclonal antibody directed against Gb3Cer/CD77: a useful immunochemical reagent for a differentiation marker in Burkitt’s lymphoma and germinal centre B cells. Glycoconj J 14:379–388

    Article  PubMed  CAS  Google Scholar 

  25. Miyatake T (1969) A study on glycolipids in Fabry’s disease. Jpn J Exp Med 38:135–138

    Google Scholar 

  26. Mogami K, Kishi H, Kobayashi S (2005) Sphingomyelinase causes endothelium-dependent vasorelaxation through endothelial nitric oxide production without cytosolic Ca(2+) elevation. FEBS Lett 579:393–397

    Article  PubMed  CAS  Google Scholar 

  27. Moore D, Scott LJC, Gladwin MT, Altarescu G, Kaneski C, Suzuki K, Pease-Fye M, Ferri R, Brady RO, Herscovitch P, Schiffmann R (2001) Regional cerebral hyper-perfusion and nitric oxide pathway dysregulation in Fabry disease: reversal by enzyme replacement therapy. Circulation 104:1506–1512

    PubMed  CAS  Google Scholar 

  28. Moore DF, Krokhin OV, Beavis RC, Ries M, Robinson C, Goldin E, Brady RO, Wilkins JA, Schiffmann R (2007) Proteomics of specific treatment-related alterations in Fabry disease: a strategy to identify biological abnormalities. Proc Natl Acad Sci USA 104:2873–2878

    Article  PubMed  CAS  Google Scholar 

  29. Ogawa K, Sugamata K, Funamoto N, Abe T, Sato T, Nagashima K, Ohkawa S (1990) Restricted accumulation of globotriaosylceramide in the hearts of atypical cases of Fabry’s disease. Human Pathol 21:1067–1073

    Article  CAS  Google Scholar 

  30. Olivero OA, Semino C, Poirier MC (1990) Localization of DNA adducts induced by N-acetoxy-N-2-acetylaminofluorene in Chinese hamster ovary cells using electron microscopy and colloidal gold. Genes Chromosomes Cancer 2:130–136

    Article  PubMed  CAS  Google Scholar 

  31. Oosterwijk E, Kalisiak A, Wakka JC, Scheinberg DA, Old LJ (1991) Monoclonal antibodies against Gal alpha 1-4Gal beta 1-4Glc (Pk, CD77) produced with a synthetic glycoconjugate as immunogen: reactivity with carbohydrates, with fresh frozen human tissues and hematopoietic tumors. Int J Cancer 48:848–854

    Article  PubMed  CAS  Google Scholar 

  32. Pagano RE (2003) Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. Philos Trans R Soc Lond B Biol Sci 358:885–891

    Article  PubMed  CAS  Google Scholar 

  33. Paton JC, Paton AW (1998) Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 11:450–479

    PubMed  CAS  Google Scholar 

  34. Pelled D, Lloyd-Evans E, Riebeling C, Jeyakumar M, Platt FM, Futerman AH (2003) Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. J Biol Chem 278:29496–29501

    Article  PubMed  CAS  Google Scholar 

  35. Pelled D, Trajkovic-Bodennec S, Lloyd-Evans E, Sidransky E, Schiffmann R, Futerman AH (2005) Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiol Dis 18:83–88

    Article  PubMed  CAS  Google Scholar 

  36. Rozenfeld PA, Croxatto O, Ebner R, Fossati CA (2006) Immunofluorescence detection of globotriaosylceramide deposits in conjunctival biopsies of Fabry disease patients. Clin Exp Ophthalmol 34:689–694

    Article  Google Scholar 

  37. Schibanoff JM, Kamoshita S, O’Brien JS (1969) Tissue distribution of glycosphingolipids in a case of Fabry’s disease. J Lipid Res 10:515–520

    PubMed  CAS  Google Scholar 

  38. Schiffmann R, Floeter MK, Dambrosia JM, Gupta S, Moore DF, Sharabi Y, Khurana RK, Brady RO (2003) Enzyme replacement therapy improves peripheral nerve and sweat function in Fabry disease. Muscle Nerve 28:703–710

    Article  PubMed  CAS  Google Scholar 

  39. Schiffmann R, Rapkiewicz A, Abu-Asab M, Ries M, Askari H, Tsokos M, Quezado M (2006) Pathological findings in a patient with Fabry disease who died after 2.5 years of enzyme replacement. Virchows Arch 448:337–343

    Article  PubMed  Google Scholar 

  40. Schiffmann R, Ries M, Timmons M, Flaherty JT, Brady RO (2006) Long-term therapy with agalsidase alfa for Fabry disease: safety and effects on renal function in a home infusion setting. Nephrol Dial Transplant 21:345–354

    Article  PubMed  CAS  Google Scholar 

  41. Semino-Mora C, Dalakas MC (1998) Rimmed vacuoles with beta-amyloid and ubiquitinated filamentous deposits in the muscles of patients with long-standing denervation (postpoliomyelitis muscular atrophy): similarities with inclusion body myositis. Human Pathol 29:1128–1133

    Article  CAS  Google Scholar 

  42. Stirling JW, Graff PS (1995) Antigen unmasking for immunoelectron microscopy: labeling is improved by treating with sodium ethoxide or sodium metaperiodate, then heating on retrieval medium. J Histochem Cytochem 43:115–123

    PubMed  CAS  Google Scholar 

  43. Tao-Cheng JH, Vinade L, Smith C, Winters CA, Ward R, Brightman MW, Reese TS, Dosemeci A (2001) Sustained elevation of calcium induces Ca(2+)/calmodulin-dependent protein kinase II clusters in hippocampal neurons. Neuroscience 106:69–78

    Article  PubMed  CAS  Google Scholar 

  44. Tessitore A, del PMM, Sano R, Ma Y, Mann L, Ingrassia A, Laywell ED, Steindler DA, Hendershot LM, d’Azzo A (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15:753–766

    Article  PubMed  CAS  Google Scholar 

  45. Tetaud C, Falguieres T, Carlier K, Lecluse Y, Garibal J, Coulaud D, Busson P, Steffensen R, Clausen H, Johannes L, Wiels J (2003) Two distinct Gb3/CD77 signaling pathways leading to apoptosis are triggered by anti-Gb3/CD77 mAb and verotoxin-1. J Biol Chem 278:45200–45208

    Article  PubMed  CAS  Google Scholar 

  46. Walkley SU (1995) Pyramidal neurons with ectopic dendrites in storage diseases exhibit increased GM2 ganglioside immunoreactivity. Neuroscience 68:1027–1035

    Article  PubMed  CAS  Google Scholar 

  47. Walkley SU, Thrall MA, Haskins ME, Mitchell TW, Wenger DA, Brown DE, Dial S, Seim H (2005) Abnormal neuronal metabolism and storage in mucopolysaccharidosis type VI (Maroteaux–Lamy) disease. Neuropathol Appl Neurobiol 31:536–544

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the NINDS EM facility for expert technical help in the pre-embedding immunogold technique. This study was funded by the Intramural Program of the National Institute of Neurological Disorders and Stroke and the National Cancer Institute. The authors do not have financial conflict of interest that is relevant to this study. Dr. Brandon A. Wustman is employed by Amicus Therapeutics that develops pharmacological chaperones for the treatment of lysosomal diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Schiffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askari, H., Kaneski, C.R., Semino-Mora, C. et al. Cellular and tissue localization of globotriaosylceramide in Fabry disease. Virchows Arch 451, 823–834 (2007). https://doi.org/10.1007/s00428-007-0468-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-007-0468-6

Keywords

Navigation