Skip to main content

Advertisement

Log in

CD34+ fibrocytes in chronic cystitis and noninvasive and invasive urothelial carcinomas of the urinary bladder

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

CD34+ fibrocytes are constitutive elements of the connective tissue where they play a role in matrix synthesis and tumor-associated stromal remodeling. Secreted protein, acidic, and rich in cysteine (SPARC) is a pivotal mediator of stromal remodeling precipitated by invasive carcinomas. The present study was undertaken to investigate CD34+ fibrocytes in the stroma of the tumor-free urinary bladder, chronic cystitis, and urothelial carcinomas together with stromal expression of α-smooth muscle actin (α-SMA), CD117, and SPARC. In tumor-free urinary bladder and chronic cystitis, CD34+ fibrocytes were found in the deep lamina propria and tunica muscularis, whereas the superficial lamina propria disclosed a CD34-negative and α-SMA-positive fibrocyte-like cell. Invasive urothelial carcinomas revealed a complete loss of CD34+ fibrocytes and concomitant appearance of α-SMA-reactive myofibroblasts which showed strong expression of SPARC. CD117 expression of tumor-free and tumor-associated stroma revealed no differences. We in this study for the first time describe CD34+ fibrocytes in the urinary bladder and an up-to-now unknown population of α-SMA-positive fibrocytes exclusively occurring in the superficial lamina propria. Stromal remodeling associated with invasive carcinomas in the urinary bladder is characterized by a loss of CD34+ fibrocytes paralleled by a gain of α-SMA-positive myofibroblasts and increased expression of SPARC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    PubMed  CAS  Google Scholar 

  2. Abe K, Hibino T, Mishima H, Shimomura Y (2004) The cytokine regulation of SPARC production by rabbit corneal epithelial cells and fibroblasts in vitro. Cornea 23:172–179

    Article  PubMed  Google Scholar 

  3. Barth PJ, Ebrahimsade S, Ramaswamy A, Moll R (2002) CD34+ fibrocytes in invasive ductal carcinoma, ductal carcinoma in situ, and benign breast lesions. Virchows Arch 440:298–303

    Article  PubMed  CAS  Google Scholar 

  4. Barth PJ, Ebrahimsade S, Hellinger A, Moll R, Ramaswamy A (2002) CD34+ fibrocytes in neoplastic and inflammatory pancreatic lesions. Virchows Arch 440:128–133

    Article  PubMed  CAS  Google Scholar 

  5. Barth PJ, Ramaswamy A, Moll R (2002) CD34+ fibrocytes in normal cervical stroma, cervical intraepithelial neoplasia III, and invasive squamous cell carcinoma of the cervix uteri. Virchows Arch 441:564–568

    Article  PubMed  Google Scholar 

  6. Barth PJ, Schenck zu Schweinsberg T, Ramaswamy A, Moll R (2004) CD34+ fibrocytes, α-smooth muscle antigen-positive myofibroblasts, and CD117 expression in the stroma of invasive squamous cell carcinomas of the oral cavity, pharynx, and larynx. Virchows Arch 444:231–234

    Article  PubMed  CAS  Google Scholar 

  7. Barth PJ, Koster H, Moosdorf R (2005) CD34+ fibrocytes in normal mitral valves and myxomatous mitral valve degeneration. Pathol Res Pract 201:301–304

    Article  PubMed  Google Scholar 

  8. Barth PJ, Moll R, Ramaswamy A (2005) Stromal remodeling and SPARC (secreted protein acid rich in cysteine) expression in invasive ductal carcinomas of the breast. Virchows Arch 446:532–536

    Article  PubMed  CAS  Google Scholar 

  9. Bradshaw AD, Sage EH (2001) SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107:1049–1054

    PubMed  CAS  Google Scholar 

  10. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    PubMed  CAS  Google Scholar 

  11. Chauhan H, Abraham A, Phillips JR, Pringle JH, Walker RA, Jones JL (2003) There is more than one kind of myofibroblast: analysis of CD34 expression in benign, in situ, and invasive breast lesions. J Clin Pathol 56:271–276

    Article  PubMed  CAS  Google Scholar 

  12. Chesney J, Bacher M, Bender A, Bucala R (1997) The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci USA 94:6307–6312

    Article  PubMed  CAS  Google Scholar 

  13. Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R (1998) Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 160:419–425

    PubMed  CAS  Google Scholar 

  14. Espana EM, Kawakita T, Liu CY, Tseng SC (2004) CD-34 expression by cultured human keratocytes is downregulated during myofibroblast differentiation induced by TGF-beta1. Invest Ophthalmol Vis Sci 45:2985–2991

    Article  PubMed  Google Scholar 

  15. Framson PE, Sage EH (2004) SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 92:679–690

    Article  PubMed  CAS  Google Scholar 

  16. Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, Metz CN (2001) Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 15:2215–2224

    Article  PubMed  CAS  Google Scholar 

  17. Iacobuzio-Donahue CA, Argani P, Hempen PM, Jones J, Kern SE (2002) The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Res 62:5351–5357

    PubMed  CAS  Google Scholar 

  18. Majdic O, Stockl J, Pickl WF, Bohuslav J, Strobl H, Scheinecker C, Stockinger H, Knapp W (1994) Signaling and induction of enhanced cytoadhesiveness via the hematopoietic progenitor cell surface molecule CD34. Blood 83:1226–1234

    PubMed  CAS  Google Scholar 

  19. Murphy-Ullrich JE (2001) The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 107:785–790

    Article  PubMed  CAS  Google Scholar 

  20. Nakayama H, Enzan H, Miyazaki E, Kuroda N, Naruse K, Hiroi M (2000) Differential expression of CD34 in normal colorectal tissue, peritumoral inflammatory tissue, and tumour stroma. J Clin Pathol 53:626–629

    Article  PubMed  CAS  Google Scholar 

  21. Nakayama H, Enzan H, Miyazaki E, Kuroda N, Naruse K, Kiyoku H, Toi M, Hiroi M (2001) CD34 positive stromal cells in gastric adenocarcinomas. J Clin Pathol 54:846–848

    PubMed  CAS  Google Scholar 

  22. Nakayama H, Enzan H, Yamamoto M, Miyazaki E, Hidaka C, Okumichi T, Okumichi A, Kajihara H (2003) CD34-positive stromal cells in primary lung carcinomas. Oncol Rep 10:1313–1316

    PubMed  Google Scholar 

  23. Porter PL, Sage EH, Lane TF, Funk SE, Gown AM (1995) Distribution of SPARC in normal and neoplastic human tissue. J Histochem Cytochem 43:791–800

    PubMed  CAS  Google Scholar 

  24. Ramaswamy A, Moll R, Barth PJ (2003) CD34+ fibrocytes in tubular carcinomas and radial scars of the breast. Virchows Arch 443:536–540

    Article  PubMed  Google Scholar 

  25. Reed MJ, Vernon RB, Abrass IB, Sage EH (1994) TGF-beta 1 induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J Cell Physiol 158:169–179

    Article  PubMed  CAS  Google Scholar 

  26. Ryu B, Jones J, Hollingsworth MA, Hruban RH, Kern SE (2001) Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res 61:1833–1838

    PubMed  CAS  Google Scholar 

  27. Schiemann BJ, Neil JR, Schiemann WP (2003) SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-β-signaling system. Mol Biol Cell 14:3977–3988

    Article  PubMed  CAS  Google Scholar 

  28. Shimasaki N, Kuroda N, Miyazaki E, Hayashi Y, Toi M, Hiroi M, Enzan H, Shuin T (2006) The distribution pattern of myofibroblasts in the stroma of human bladder carcinoma depends on their invasiveness. Histol Histopathol 21:349–353

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Barth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimphius, W., Moll, R., Olbert, P. et al. CD34+ fibrocytes in chronic cystitis and noninvasive and invasive urothelial carcinomas of the urinary bladder. Virchows Arch 450, 179–185 (2007). https://doi.org/10.1007/s00428-006-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-006-0347-6

Keywords

Navigation