Skip to main content
Log in

Association of CDK4 and CCND1 mRNA overexpression in laryngeal squamous cell carcinomas occurs without CDK4 amplification

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

CDK4 is involved in the control of G1–S phase transition as a part of the CCND1/CDK4 complexes. CCND1 and CDK4 gene alterations have been implicated in the development of different tumors. CCND1 has been associated with progression in laryngeal carcinomas. CDK4 protein overexpression was described associated to CCND1 overexpression in these tumors. However, the mechanisms implicated were not known. We analyzed CDK4 gene alterations and mRNA expression in a series of carcinomas of the larynx, and the results were compared to CCND1 expression and clinicopathological characteristics of the patients. CDK4 mRNA was overexpressed in 42 out of 60 tumors (70%) associated with CCND1 mRNA overexpression because 15 out of 16 cases with high CCND1 levels showed simultaneous increased levels of CDK4 mRNA (p = 0.023) and 12 (87%) of the tumors overexpressing both genes were in stage 4. No CDK4 gene amplifications, rearrangements, or mutations were detected in any of the tumors, including 24 overexpressed cases. These findings confirm that CDK4 overexpression is a frequent phenomenon in laryngeal carcinomas, which occurs at the transcriptional level but is related neither to gene amplification nor to gene mutation, and suggest that cooperation with CCND1 may be involved in the progression of laryngeal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coleman KG, Wautlet BS, Morrissey D, Mulheron J, Sedman SA, Brinkley P, Price S, Webster KR (1997) Identification of CDK4 sequences involved in cyclin D1 and p16 binding. J Biol Chem 272:18869–18874

    Article  PubMed  CAS  Google Scholar 

  2. Dong Y, Sui L, Sugimoto K, Tai Y, Tokuda M (2001) Cyclin D1–CDK4 complex, a possible critical factor for cell proliferation and prognosis in laryngeal squamous cell carcinomas. Int J Cancer 95:209–215

    Article  PubMed  CAS  Google Scholar 

  3. Geng Y, Weinberg RA (1993) Transforming growth factor beta effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc Natl Acad Sci USA 90:10315–10319

    Article  PubMed  CAS  Google Scholar 

  4. Guldberg P, Kirkin AF, Gronbaek K, thor Straten P, Ahrenkiel V, Zeuthen J (1997) Complete scanning of the CDK4 gene by denaturing gradient gel electrophoresis: a novel missense mutation but low overall frequency of mutations in sporadic metastatic malignant melanoma. Int J Cancer 72:780–783

    Article  PubMed  CAS  Google Scholar 

  5. Haas K, Staller P, Geisen C, Bartek J, Eilers M, Moroy T (1997) Mutual requirement of CDK4 and Myc in malignant transformation: evidence for cyclin D1/CDK4 and p16INK4A as upstream regulators of Myc. Oncogene 15:179–192

    Article  PubMed  CAS  Google Scholar 

  6. He J, Allen JR, Collins VP, Allalunis-Turner MJ, Godbout R, Day RS III, James CD (1994) CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer Res 54:5804–5807

    PubMed  CAS  Google Scholar 

  7. Hunter T, Pines J (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79:573–582

    Article  PubMed  CAS  Google Scholar 

  8. Jares P, Fernandez PL, Campo E, Nadal A, Bosch F, Aiza G, Nayach I, Traserra J, Cardesa A (1994) PRAD1/cyclin D1 gene amplification correlates with messenger RNA overexpression and tumor progression in human laryngeal carcinomas. Cancer Res 54:4813–4817

    PubMed  CAS  Google Scholar 

  9. Jares P, Fernandez PL, Nadal A, Cazorla M, Hernandez L, Pinyol M, Hernandez S, Traserra J, Cardesa A, Campo E (1997) p16MTS1/CDK4I mutations and concomitant loss of heterozygosity at 9p2123 are frequent events in squamous cell carcinoma of the larynx. Oncogene 15:1445–1453

    Article  PubMed  CAS  Google Scholar 

  10. Jares P, Nadal A, Fernandez PL, Pinyol M, Hernandez L, Cazorla M, Hernandez S, Bea S, Cardesa A, Campo E (1999) Disregulation of p16MTS1/CDK4I protein and mRNA expression is associated with gene alterations in squamous-cell carcinoma of the larynx. Int J Cancer 81:705–711

    Article  PubMed  CAS  Google Scholar 

  11. Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ, Look AT (1993) Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res 53:5535–5541

    PubMed  CAS  Google Scholar 

  12. Lu S, Tsai SY, Tsai MJ (1997) Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Res 57:4511–4516

    PubMed  CAS  Google Scholar 

  13. Maelandsmo GM, Florenes VA, Hovig E, Oyjord T, Engebraaten O, Holm R, Borresen AL, Fodstad O (1996) Involvement of the pRb/p16/cdk4/cyclin D1 pathway in the tumorigenesis of sporadic malignant melanomas. Br J Cancer 73:909–916

    PubMed  CAS  Google Scholar 

  14. Martinez LA, Chen Y, Fischer SM, Conti CJ (1999) Coordinated changes in cell cycle machinery occur during keratinocyte terminal differentiation. Oncogene 18:397–406

    Article  PubMed  CAS  Google Scholar 

  15. Masciullo V, Scambia G, Marone M, Giannitelli C, Ferrandina G, Bellacosa A, Benedetti PP, Mancuso S (1997) Altered expression of cyclin D1 and CDK4 genes in ovarian carcinomas. Int J Cancer 74:390–395

    Article  PubMed  CAS  Google Scholar 

  16. Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF, Sherr CJ (1992) Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71:323–334

    Article  PubMed  CAS  Google Scholar 

  17. Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY (1994) Dtype cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14:2066–2076

    PubMed  CAS  Google Scholar 

  18. Nadal A, Jares P, Cazorla M, Fernandez PL, Sanjuan X, Hernandez L, Pinyol M, Aldea M, Mallofre C, Muntane J, Traserra J, Campo E, Cardesa A (1997) p21WAF1/Cip1 expression is associated with cell differentiation but not with p53 mutations in squamous cell carcinomas of the larynx. J Pathol 183:156–163

    Article  PubMed  CAS  Google Scholar 

  19. Parkin DM, Pisani P, Ferlay J (1993) Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 54:594–606

    Article  PubMed  CAS  Google Scholar 

  20. Pawar SA, Szentirmay MN, Hermeking H, Sawadogo M (2004) Evidence for a cancer-specific switch at the CDK4 promoter with loss of control by both USF and cMyc. Oncogene 23:6125–6135

    Article  PubMed  CAS  Google Scholar 

  21. Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP (1994) Amplification of multiple genes from chromosomal region 12q1314 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res 54:4299–4303

    PubMed  CAS  Google Scholar 

  22. Rodriguez-Puebla ML, Robles AI, Johnson DG, LaCava M, Conti CJ (1998) Synchronized proliferation induced by 12-O-tetradecanoylphorbol-13-acetate treatment of mouse skin: an in vivo model for cell cycle regulation. Cell Growth Differ 9:31–39

    PubMed  CAS  Google Scholar 

  23. Sonoda Y, Yoshimoto T, Sekiya T (1995) Homozygous deletion of the MTS1/p16 and MTS2/p15 genes and amplification of the CDK4 gene in glioma. Oncogene 11:2145–2149

    PubMed  CAS  Google Scholar 

  24. Tsao H, Benoit E, Sober AJ, Thiele C, Haluska FG (1998) Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. Cancer Res 58:109–113

    PubMed  CAS  Google Scholar 

  25. Urashima M, Teoh G, Ogata A, Chauhan D, Treon SP, Hoshi Y, DeCaprio JA, Anderson KC (1997) Role of CDK4 and p16INK4A in interleukin-6-mediated growth of multiple myeloma. Leukemia 11:1957–1963

    Article  PubMed  CAS  Google Scholar 

  26. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284

    Article  PubMed  CAS  Google Scholar 

  27. Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N, Dracopoli NC (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12:97–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from Fondo de Investigación Sanitaria (FIS), Instituto de Salud Carlos III, ref. 030407, Red Temática del Cáncer, Instituto de Salud Carlos III, n°C03/10, and Junta de Comarques de Barcelona de la Asociación Española Contra el Cáncer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons Nadal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadal, A., Jares, P., Pinyol, M. et al. Association of CDK4 and CCND1 mRNA overexpression in laryngeal squamous cell carcinomas occurs without CDK4 amplification. Virchows Arch 450, 161–167 (2007). https://doi.org/10.1007/s00428-006-0314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-006-0314-2

Keywords

Navigation