Skip to main content

Advertisement

Log in

Molecular analysis of the EGFR-RAS-RAF pathway in pancreatic ductal adenocarcinomas: lack of mutations in the BRAF and EGFR genes

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The vast majority of tumors of the pancreas are ductal adenocarcinomas. This cancer type has an extremely poor prognosis and in many Western countries, it represents the fifth leading cause of cancer-related death. Pancreatic ductal adenocarcinomas exhibit the highest incidence of activating KRAS (Ki-Ras) mutations observed in any human cancer. It was therefore of interest to examine how this pattern would relate to mutations in the BRAF and EGFR genes, which are involved in the same signaling pathway as KRAS. We screened a series of 43 formalin-fixed, paraffin-embedded ductal adenocarcinomas of the pancreas. When DNA was extracted from whole tissue sections, KRAS codon 12 mutations were detected in 67% of the tumors. When cancerous ducts were isolated by laser-assisted microdissection, 91% were positive for KRAS mutations. Although it did not reach statistical significance, there was a trend in our material that survival after diagnosis varied according to KRAS mutation subtype, GTT-positive patients having the best prognosis. No alterations in BRAF exons 11 and 15 or in EGFR exons 18–21 were detected in KRAS-positive or KRAS-negative cases. We therefore conclude that the BRAF and EGFR mutations commonly seen in a variety of human cancers are generally absent from pancreatic ductal adenocarcinomas. Apparently, these tumors depend on no more than one genetic hit in the EGFR-RAS-RAF signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akslen LA, Angelini S, Straume O, Bachmann IM, Molven A, Hemminki K, Kumar R (2005) BRAF and NRAS mutations are frequent in nodular melanoma but are not associated with tumor cell proliferation or patient survival. J Invest Dermatol 125:312–317

    PubMed  CAS  Google Scholar 

  2. American Joint Committee on Cancer (1998) Cancer staging handbook, 5th edn. Lippincott Raven, Philadelphia

    Google Scholar 

  3. Andreyev HJ, Norman AR, Cunningham D, Oates J, Dix BR, Iacopetta BJ, Young J, Walsh T, Ward R, Hawkins N et al (2001) Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer 85:692–696

    Article  PubMed  CAS  Google Scholar 

  4. Banerjee SK, Makdisi WF, Weston AP, Campbell DR (1997) A two-step enriched-nested PCR technique enhances sensitivity for detection of codon 12 K-ras mutations in pancreatic adenocarcinoma. Pancreas 15:16–24

    Article  PubMed  CAS  Google Scholar 

  5. Bartsch DK (2003) Familial pancreatic cancer. Br J Surg 90:386–387

    Article  PubMed  CAS  Google Scholar 

  6. Blaker H, Helmchen B, Bonisch A, Aulmann S, Penzel R, Otto HF, Rieker RJ (2004) Mutational activation of the RAS-RAF-MAPK and the Wnt pathway in small intestinal adenocarcinomas. Scand J Gastroenterol 39:748–753

    Article  PubMed  CAS  Google Scholar 

  7. Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V, Hempen PM, Hilgers W, Yeo CJ, Hruban RH et al (2003) BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol 163:1255–1260

    PubMed  CAS  Google Scholar 

  8. Cancer Registry of Norway (2005) Cancer in Norway 2002. Cancer Registry of Norway, Oslo

    Google Scholar 

  9. Carpelan-Holmstrom M, Nordling S, Pukkala E, Sankila R, Luttges J, Kloppel G, Haglund C (2005) Does anyone survive pancreatic ductal adenocarcinoma? A nationwide study re-evaluating the data of the Finnish Cancer Registry. Gut 54:385–387

    Article  PubMed  CAS  Google Scholar 

  10. Chan TL, Zhao W, Leung SY, Yuen ST (2003) BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63:4878–4881

    PubMed  CAS  Google Scholar 

  11. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  12. Domingo E, Espin E, Armengol M, Oliveira C, Pinto M, Duval A, Brennetot C, Seruca R, Hamelin R, Yamamoto H et al (2004) Activated BRAF targets proximal colon tumors with mismatch repair deficiency and MLH1 inactivation. Genes Chromosomes Cancer 39:138–142

    Article  PubMed  CAS  Google Scholar 

  13. Fukushima T, Suzuki S, Mashiko M, Ohtake T, Endo Y, Takebayashi Y, Sekikawa K, Hagiwara K, Takenoshita S (2003) BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22:6455–6457

    Article  PubMed  CAS  Google Scholar 

  14. Goggins M, Offerhaus GJ, Hilgers W, Griffin CA, Shekher M, Tang D, Sohn TA, Yeo CJ, Kern SE, Hruban RH (1998) Pancreatic adenocarcinomas with DNA replication errors (RER+) are associated with wild-type K-ras and characteristic histopathology. Poor differentiation, a syncytial growth pattern, and pushing borders suggest RER+. Am J Pathol 152:1501–1507

    PubMed  CAS  Google Scholar 

  15. Hruban RH, van Mansfeld AD, Offerhaus GJ, van Weering DH, Allison DC, Goodman SN, Kensler TW, Bose KK, Cameron JL, Bos JL (1993) K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol 143:545–554

    PubMed  CAS  Google Scholar 

  16. Hruban RH, Goggins M, Parsons J, Kern SE (2000) Progression model for pancreatic cancer. Clin Cancer Res 6:2969–2972

    PubMed  CAS  Google Scholar 

  17. International Agency for Research on Cancer (2000) Tumours of the digestive system. In: Hamilton SR, Aaltonen LA (eds) WHO classification of tumours. IARC Press, Lyon

    Google Scholar 

  18. Ishimura N, Yamasawa K, Karim Rumi MA, Kadowaki Y, Ishihara S, Amano Y, Nio Y, Higami T, Kinoshita Y (2003) BRAF and K-ras gene mutations in human pancreatic cancers. Cancer Lett 199:169–173

    Article  PubMed  CAS  Google Scholar 

  19. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ (2003) Cancer statistics, 2003. CA Cancer J Clin 53:5–26

    Article  PubMed  Google Scholar 

  20. Kawesha A, Ghaneh P, Andren-Sandberg A, Ograeid D, Skar R, Dawiskiba S, Evans JD, Campbell F, Lemoine N, Neoptolemos JP (2000) K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. Int J Cancer 89:469–474

    Article  PubMed  CAS  Google Scholar 

  21. Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M, Beger HG (1992) Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 90:1352–1360

    Article  PubMed  CAS  Google Scholar 

  22. Lee EJ, Choi C, Park CK, Maeng L, Lee JQ, Lee A, Kim K-M (2005) Tracing origin of serrated adenomas with BRAF and KRAS mutations. Virchows Arch 447:597–602

    Article  PubMed  Google Scholar 

  23. Li D, Xie K, Wolff R, Abbruzzese JL (2004) Pancreatic cancer. Lancet 363:1049–1057

    Article  PubMed  CAS  Google Scholar 

  24. Lohr M, Kloppel G, Maisonneuve P, Lowenfels AB, Luttges J (2005) Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 7:17–23

    Article  PubMed  CAS  Google Scholar 

  25. Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S (2004) Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29:193–203

    Article  PubMed  CAS  Google Scholar 

  26. Lowenfels AB, Maisonneuve P (2004) Epidemiology and prevention of pancreatic cancer. Jpn J Clin Oncol 34:238–244

    Article  PubMed  Google Scholar 

  27. Luttges J, Schlehe B, Menke MA, Vogel I, Henne-Bruns D, Kloppel G (1999) The K-ras mutation pattern in pancreatic ductal adenocarcinoma usually is identical to that in associated normal, hyperplastic, and metaplastic ductal epithelium. Cancer 85:1703–1710

    Article  PubMed  CAS  Google Scholar 

  28. Lynch HT, Shaw TG, Lynch JF (2004) Inherited predisposition to cancer: a historical overview. Am J Med Genet C Semin Med Genet 129:5–22

    Article  PubMed  Google Scholar 

  29. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  30. Maple JT, Smyrk TC, Boardman LA, Johnson RA, Thibodeau SN, Chari ST (2005) Defective DNA mismatch repair in long-term (> or =3 years) survivors with pancreatic cancer. Pancreatology 5:220–227

    Article  PubMed  CAS  Google Scholar 

  31. Miller CJ, Cheung M, Sharma A, Clarke L, Helm K, Mauger D, Robertson GP (2004) Method of mutation analysis may contribute to discrepancies in reports of (V599E)BRAF mutation frequencies in melanocytic neoplasms. J Invest Dermatol 123:990–992

    Article  PubMed  CAS  Google Scholar 

  32. Nagasaka T, Sasamoto H, Notohara K, Cullings HM, Takeda M, Kimura K, Kambara T, MacPhee DG, Young J, Leggett BA et al (2004) Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol 22:4584–4594

    Article  PubMed  CAS  Google Scholar 

  33. Ogino S, Kawasaki T, Brahmandam M, Yan L, Cantor M, Namgyal C, Mino-Kenudson M, Lauwers GY, Loda M, Fuchs CS (2005) Sensitive sequencing method for KRAS mutation detection by pyrosequencing. J Mol Diagn 7:413–421

    PubMed  CAS  Google Scholar 

  34. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  35. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934

    Article  PubMed  CAS  Google Scholar 

  36. Ren YX, Xu GM, Li ZS, Song YG (2004) Detection of point mutation in K-ras oncogene at codon 12 in pancreatic diseases. World J Gastroenterol 10:881–884

    PubMed  CAS  Google Scholar 

  37. Richter A, Niedergethmann M, Sturm JW, Lorenz D, Post S, Trede M (2003) Long-term results of partial pancreaticoduodenectomy for ductal adenocarcinoma of the pancreatic head: 25-year experience. World J Surg 27:324–329

    Article  PubMed  Google Scholar 

  38. Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M, Goodman SN, Sohn TA, Hruban RH, Yeo CJ et al (1997) Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 57:1731–1734

    PubMed  CAS  Google Scholar 

  39. Saetta AA, Papanastasiou P, Michalopoulos NV, Gigelou F, Korkolopoulou P, Bei T, Patsouris E (2004) Mutational analysis of BRAF in gallbladder carcinomas in association with K-ras and p53 mutations and microsatellite instability. Virchows Arch 445:179–182

    Article  PubMed  CAS  Google Scholar 

  40. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Article  PubMed  CAS  Google Scholar 

  41. Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK, Moskaluk CA, Hahn SA, Schwarte-Waldhoff I, Schmiegel W et al (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57:3126–3130

    PubMed  CAS  Google Scholar 

  42. Sessa F, Bonato M, Bisoni D, Ranzani GN, Capella C (1998) Ki-ras and p53 gene mutations in pancreatic ductal carcinoma: a relationship with tumor phenotype and survival. Eur J Histochem 42(Spec Issue):67–76

    PubMed  CAS  Google Scholar 

  43. Sommerer F, Vieth M, Markwarth A, Rohrich K, Vomschloss S, May A, Ell C, Stolte M, Hengge UR, Wittekind C et al (2004) Mutations of BRAF and KRAS2 in the development of Barrett’s adenocarcinoma. Oncogene 23:554–558

    Article  PubMed  CAS  Google Scholar 

  44. Song MM, Nio Y, Dong M, Tamura K, Furuse K, Tian YL, He SG, Shen K (2000) Comparison of K-ras point mutations at codon 12 and p21 expression in pancreatic cancer between Japanese and Chinese patients. J Surg Oncol 75:176–185

    Article  PubMed  CAS  Google Scholar 

  45. van Heek NT, Meeker AK, Kern SE, Yeo CJ, Lillemoe KD, Cameron JL, Offerhaus GJ, Hicks JL, Wilentz RE, Goggins MG et al (2002) Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 161:1541–1547

    PubMed  Google Scholar 

  46. Wagner M, Redaelli C, Lietz M, Seiler CA, Friess H, Buchler MW (2004) Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg 91:586–594

    Article  PubMed  CAS  Google Scholar 

  47. Weir B, Zhao X, Meyerson M (2004) Somatic alterations in the human cancer genome. Cancer Cell 6:433–438

    Article  PubMed  CAS  Google Scholar 

  48. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto H, Itoh F, Nakamura H, Fukushima H, Sasaki S, Perucho M, Imai K (2001) Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res 61:3139–3144

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bendik Nordanger for expert technical assistance and Lars A. Akslen, Hanne Puntervoll, and Audny Hellebø for samples of positive control tissue. The study was supported by grants from the Meltzer Foundation, The Norwegian Cancer Society, and Helse Vest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Molven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Immervoll, H., Hoem, D., Kugarajh, K. et al. Molecular analysis of the EGFR-RAS-RAF pathway in pancreatic ductal adenocarcinomas: lack of mutations in the BRAF and EGFR genes. Virchows Arch 448, 788–796 (2006). https://doi.org/10.1007/s00428-006-0191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-006-0191-8

Keywords

Navigation