Skip to main content

Advertisement

Log in

Anatomic site-specific patterns of gene copy number gains in skin, mucosal, and uveal melanomas detected by fluorescence in situ hybridization

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

To assess the differences between melanomas of different location and different etiology, 372 malignant melanomas were brought in a tissue microarray format. The collection included 23 acral and 118 non-acral skin melanomas, 9 mucosal melanomas, 100 uveal melanomas, and 122 melanoma metastases. Fluorescence in situ hybridization (FISH) was used to assess copy number changes of the cyclin D1 (CCND1), MDM2, c-myc (MYC), and HER2 genes. FISH analysis revealed distinct differences between melanomas from different locations. CCND1 amplifications were detected in skin melanomas from sites with chronic sun exposure (6 of 32 cases), acral melanomas (4 of 17 cases), and mucosal melanomas (one of ten cases) but not in uveal melanomas. High-level MDM2 amplifications were exclusively present in acral melanomas (2 of 19 cases). MYC copy number gains were detected in 32 of 71 uveal melanomas, five of eight mucosal melanomas, and 6 of 67 melanomas from sites with intermittent sun exposure but not in acral melanomas nor melanomas from sites with chronic sun exposure. Alterations of the MYC gene were associated with advanced tumor stage. There were no high-level HER2 amplifications. Site-specific genetic and epigenetic features may impact the response of melanomas to various anti-cancer drugs and should be considered in future studies on the molecular pathogenesis of malignant melanomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, Urist M, McMasters KM, Ross MI, Kirkwood JM, Atkins MB, Thompson JA, Coit DG, Byrd D, Desmond R, Zhang Y, Liu PY, Lyman GH, Morabito A (2001) Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 19:3622–3634

    PubMed  CAS  Google Scholar 

  2. Bastian BC (2003) Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer. Oncogene 22:3081–3086

    Article  PubMed  CAS  Google Scholar 

  3. Bastian BC, Kashani-Sabet M, Hamm H, Godfrey T, Moore DH 2nd, Brocker EB, LeBoit PE, Pinkel D (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60:1968–1973

    PubMed  CAS  Google Scholar 

  4. Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58:2170–2175

    PubMed  CAS  Google Scholar 

  5. Bastian BC, Olshen AB, LeBoit PE, Pinkel D (2003) Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol 163:1765–1770

    PubMed  CAS  Google Scholar 

  6. Bodey B, Bodey Jr B, Groger AM, Luck JV, Siegel SE, Taylor CR, Kaiser HE (1997) Clinical and prognostic significance of the expression of the c-erbB-2 and c-erbB-3 oncoproteins in primary and metastatic malignant melanomas and breast carcinomas. Anticancer Res 17:1319–1330

    PubMed  CAS  Google Scholar 

  7. Bollag G, Freeman S, Lyons JF, Post LE (2003) Raf pathway inhibitors in oncology. Curr Opin Investig Drugs 4:1436–1441

    PubMed  CAS  Google Scholar 

  8. Casorzo L, Luzzi C, Nardacchione A, Picciotto F, Pisacane A, Risio M (2005) Fluorescence in situ hybridization (FISH) evaluation of chromosomes 6, 7, 9 and 10 throughout human melanocytic tumorigenesis. Melanoma Res 15:155–160

    Article  PubMed  CAS  Google Scholar 

  9. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman G, Slamon DJ (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639–2648

    PubMed  CAS  Google Scholar 

  10. Cohen Y, Goldenberg-Cohen N, Parrella P, Chowers I, Merbs SL, Pe’er J, Sidransky D (2003) Lack of BRAF mutation in primary uveal melanoma. Invest Ophthalmol Vis Sci 44:2876–2878

    Article  PubMed  Google Scholar 

  11. Cree IA (2000) Cell cycle and melanoma–two different tumours from the same cell type. J Pathol 191:112–114

    Article  PubMed  CAS  Google Scholar 

  12. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147

    Article  PubMed  CAS  Google Scholar 

  13. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  14. Edmunds SC, Cree IA, Di Nicolantonio F, Hungerford JL, Hurren JS, Kelsell DP (2003) Absence of BRAF gene mutations in uveal melanomas in contrast to cutaneous melanomas. Br J Cancer 88:1403–1405

    Article  PubMed  CAS  Google Scholar 

  15. Edwards RH, Ward MR, Wu H, Medina CA, Brose MS, Volpe P, Nussen-Lee S, Haupt HM, Martin AM, Herlyn M, Lessin SR, Weber BL (2004) Absence of BRAF mutations in UV-protected mucosal melanomas. J Med Genet 41:270–272

    Article  PubMed  CAS  Google Scholar 

  16. Ehlers JP, Worley L, Onken MD, Harbour JW (2005) DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma. Clin Cancer Res 11:3609–3613

    Article  PubMed  CAS  Google Scholar 

  17. Fink-Puches R, Pilarski P, Schmidbauer U, Kerl H, Soyer HP (2001) No evidence for c-erbB-2 overexpression in cutaneous melanoma. Anticancer Res 21:2793–2795

    PubMed  CAS  Google Scholar 

  18. Hausler T, Stang A, Anastassiou G, Jockel KH, Mrzyk S, Horsthemke B, Lohmann DR, Zeschnigk M (2005) Loss of heterozygosity of 1p in uveal melanomas with monosomy 3. Int J Cancer 116:909–913

    Article  PubMed  CAS  Google Scholar 

  19. Inman JL, Kute T, White W, Pettenati M, Levine EA (2003) Absence of HER2 overexpression in metastatic malignant melanoma. J Surg Oncol 84:82–88

    Article  PubMed  Google Scholar 

  20. Kallioniemi OP, Wagner U, Kononen J, Sauter G (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10:657–662

    Article  PubMed  CAS  Google Scholar 

  21. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  PubMed  CAS  Google Scholar 

  22. Kraehn GM, Utikal J, Udart M, Greulich KM, Bezold G, Kaskel P, Leiter U, Peter RU (2001) Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. Br J Cancer 84:72–79

    Article  PubMed  CAS  Google Scholar 

  23. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  PubMed  CAS  Google Scholar 

  24. Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T, Ono T, Albertson DG, Pinkel D, Bastian BC (2003) Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95:1878–1890

    PubMed  CAS  Google Scholar 

  25. Mudhar HS, Parsons MA, Sisley K, Rundle P, Singh A, Rennie IG (2004) A critical appraisal of the prognostic and predictive factors for uveal malignant melanoma. Histopathology 45:1–12

    Article  PubMed  CAS  Google Scholar 

  26. Natali PG, Nicotra MR, Digiesi G, Cavaliere R, Bigotti A, Trizio D, Segatto O (1994) Expression of gp185HER-2 in human cutaneous melanoma: implications for experimental immunotherapeutics. Int J Cancer 56:341–346

    Article  PubMed  CAS  Google Scholar 

  27. Parrella P, Caballero OL, Sidransky D, Merbs SL (2001) Detection of c-myc amplification in uveal melanoma by fluorescent in situ hybridization. Invest Ophthalmol Vis Sci 42:1679–1684

    PubMed  CAS  Google Scholar 

  28. Pastorino F, Brignole C, Marimpietri D, Pagnan G, Morando A, Ribatti D, Semple SC, Gambini C, Allen TM, Ponzoni M (2003) Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clin Cancer Res 9:4595–4605

    PubMed  CAS  Google Scholar 

  29. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, Baly D, Baughman SA, Twaddell T, Glaspy JA, Slamon DJ (1998) Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 16:2659–2671

    PubMed  CAS  Google Scholar 

  30. Persons DL, Arber DA, Sosman JA, Borelli KA, Slovak ML (2000) Amplification and overexpression of HER-2/neu are uncommon in advanced stage melanoma. Anticancer Res 20:1965–1968

    PubMed  CAS  Google Scholar 

  31. Potti A, Hille RC, Koch M (2003) Immunohistochemical determination of HER-2/neu overexpression in malignant melanoma reveals no prognostic value, while c-Kit (CD117) overexpression exhibits potential therapeutic implications. J Carcinog 2:8

    Article  PubMed  Google Scholar 

  32. Ragnarsson-Olding B, Platz A, Olding L, Ringborg U (2004) p53 protein expression and TP53 mutations in malignant melanomas of sun-sheltered mucosal membranes versus chronically sun-exposed skin. Melanoma Res 14:395–401

    Article  PubMed  CAS  Google Scholar 

  33. Sasaki Y, Niu C, Makino R, Kudo C, Sun C, Watanabe H, Matsunaga J, Takahashi K, Tagami H, Aiba S, Horii A (2004) BRAF point mutations in primary melanoma show different prevalences by subtype. J Invest Dermatol 123:177–183

    Article  PubMed  CAS  Google Scholar 

  34. Sauter ER, Yeo UC, von Stemm A, Zhu W, Litwin S, Tichansky DS, Pistritto G, Nesbit M, Pinkel D, Herlyn M, Bastian BC (2002) Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res 62:3200–3206

    PubMed  CAS  Google Scholar 

  35. Shinozaki H, Ozawa S, Ando N, Tsuruta H, Terada M, Ueda M, Kitajima M (1996) Cyclin D1 amplification as a new predictive classification for squamous cell carcinoma of the esophagus, adding gene information. Clin Cancer Res 2:1155–1161

    PubMed  CAS  Google Scholar 

  36. Simon R, Mirlacher M, Sauter G (2004) Tissue microarrays. Methods Mol Med 97:377–389

    PubMed  CAS  Google Scholar 

  37. Singh AD, Boghosian-Sell L, Wary KK, Shields CL, De Potter P, Donoso LA, Shields JA, Cannizzaro LA (1994) Cytogenetic findings in primary uveal melanoma. Cancer Genet Cytogenet 72:109–115

    Article  PubMed  CAS  Google Scholar 

  38. Sisley K, Cottam DW, Rennie IG, Parsons MA, Potter AM, Potter CW, Rees RC (1992) Non-random abnormalities of chromosomes 3, 6, and 8 associated with posterior uveal melanoma. Genes Chromosomes Cancer 5:197–200

    Article  PubMed  CAS  Google Scholar 

  39. Sisley K, Rennie IG, Parsons MA, Jacques R, Hammond DW, Bell SM, Potter AM, Rees RC (1997) Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosomes Cancer 19:22–28

    Article  PubMed  CAS  Google Scholar 

  40. Treszl A, Adany R, Rakosy Z, Kardos L, Begany A, Gilde K, Balazs M (2004) Extra copies of c-myc are more pronounced in nodular melanomas than in superficial spreading melanomas as revealed by fluorescence in situ hybridisation. Cytometry B Clin Cytom 60:37–46

    Article  PubMed  CAS  Google Scholar 

  41. van Dijk M, Sprenger S, Rombout P, Marres H, Kaanders J, Jeuken J, Ruiter D (2003) Distinct chromosomal aberrations in sinonasal mucosal melanoma as detected by comparative genomic hybridization. Genes Chromosomes Cancer 36:151–158

    Article  PubMed  CAS  Google Scholar 

  42. White VA, Chambers JD, Courtright PD, Chang WY, Horsman DE (1998) Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer 83:354–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Katharina Glatz-Krieger and Coya Tapia had been supported by a grant from the “Schweizerische Nationalfonds” and the “SAKK”, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Glatz-Krieger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glatz-Krieger, K., Pache, M., Tapia, C. et al. Anatomic site-specific patterns of gene copy number gains in skin, mucosal, and uveal melanomas detected by fluorescence in situ hybridization. Virchows Arch 449, 328–333 (2006). https://doi.org/10.1007/s00428-006-0167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-006-0167-8

Keywords

Navigation