Skip to main content

Advertisement

Log in

Aberrant hypermethylation of RASSF1A promoter in ovarian borderline tumors and carcinomas

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The newly identified 3p21.3 tumor suppressor gene RASSF1A is inactivated by hypermethylation in variable solid tumors, including those of the lung, breast, prostate, kidney, and ovary. The purpose of this study was to evaluate the methylation status of RASSF1A in various types and stages of ovarian epithelial tumors. We analyzed the DNA methylation status of ovarian tumors using methylation-specific polymerase chain reaction in 54 frozen ovarian tumor tissues and in 97 cases of archival ovarian serous epithelial tumors using a microdissection procedure. Hypermethylation statuses were examined vs clinicopathologic findings. RASSF1A promoter methylation rates in the various types of fresh ovarian tissues were as follows: serous cystadenoma (1/5), serous tumor of borderline malignancy (2/7), serous adenocarcinoma (4/10), mucinous cystadenoma (0/5), mucinous tumor of borderline malignancy (2/7), mucinous adenocarcinoma (3/6), transitional-cell carcinoma (1/3), clear-cell carcinoma (3/3), and malignant müllerian mixed tumor (3/3). In archived serous tumor tissues, RASSF1A promoter hypermethylation was detected in serous cystadenoma (1/6, 16.6%), serous tumor of borderline malignancy (20/41, 48.8%), and in serous adenocarcinoma (25/50, 50%). The status of RASSF1A hypermethylation in borderline tumors was found to correlate statistically with the presence of microinvasion (p=0.002), peritoneal implant (p<0.001), and bilaterality (p=0.019). The RASSF1A promoter hypermethylation was frequently found in borderline tumors and carcinomas, suggesting that RASSF1A promoter hypermethylation may be a useful molecular marker for the early detection of ovarian tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J, Fullwood P, Chauhan A, Walker R, Shaw JA, Hosoe S, Lerman MI, Minna JD, Maher ER, Latif F (2001) Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20:1509–1518

    Article  PubMed  CAS  Google Scholar 

  2. Bell DA, Weinstock MA, Scully RE (1988) Peritoneal implants of ovarian serous borderline tumors. Histologic features and prognosis. Cancer 62:2212–2222

    Article  PubMed  CAS  Google Scholar 

  3. Bell KA, Smith Sehdev AE, Kurman RJ (2001) Refined diagnostic criteria for implants associated with ovarian atypical proliferative serous tumors (borderline) and micropapillary serous carcinomas. Am J Surg Pathol 25:419–432

    Article  PubMed  CAS  Google Scholar 

  4. Dammann R, Yang G, Pfeifer PF (2001) Hypermethylation of the CpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res 61:3105–3109

    PubMed  CAS  Google Scholar 

  5. de Nictolis M, Montironi R, Tommasoni S, Carinelli S, Ojeda B, Matias-Guiu X, Prat J (1992) Serous borderline tumors of the ovary. A clinicopathologic, immunohistochemical, and quantitative study of 44 cases. Cancer 70:152–160

    Article  PubMed  Google Scholar 

  6. Ford D, Easton D (1995) The genetics of breast and ovarian cancer. Br J Cancer 72:805–812

    PubMed  CAS  Google Scholar 

  7. Fullwood P, Marchini S, Rader JS, Martinez A, Macartney D, Broggini M, Morelli C, Barbanti-Brodano G, Maher ER, Latif F (1999) Detailed genetic and physical mapping of tumor suppressor loci on chromosome 3p in ovarian cancer. Cancer Res 59:4662–4667

    PubMed  CAS  Google Scholar 

  8. Honorio S, Agathanggelou A, Schuermann M, Pankow W, Viacava P, Maher ER, Latif F (2003) Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene 22:147–150

    Article  PubMed  CAS  Google Scholar 

  9. Ibanez de Caceres I, Battagli C, Esteller M, Herman JG, Dulaimi E, Edelson MI, Bergman C, Ehya H, Eisenberg BL, Cairns P (2004) Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res 64:6476–6481

    Article  PubMed  Google Scholar 

  10. Lee JY, Dong SM, Kim SY, Yoo NJ, Lee SH, Park WS (1998) A simple, precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections. Virchows Arch 433:305–309

    Article  PubMed  CAS  Google Scholar 

  11. Lee MG, Kim HY, Byun DS, Lee SJ, Lee CH, Kim JI, Chang SG, Chi SG (2001) Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res 61:6688–6692

    PubMed  CAS  Google Scholar 

  12. Murdoch WJ (1996) Ovarian surface epithelium, ovulation and carcinogenesis. Biol Rev Camb Philos Soc 71:529–543

    Article  PubMed  CAS  Google Scholar 

  13. NIH consensus conference (1995) Ovarian cancer. Screening, treatment and follow-up. NIH Consensus Development Panel on Ovarian Cancer. JAMA 273:491–497

    Article  Google Scholar 

  14. Rathi A, Virmani AK, Schorge JO, Elias KJ, Maruyama R, Minna JD, Mok SC, Girard L, Fishman DA, Gazdar AF (2002) Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women. Clin Cancer Res 8:3324–3331

    PubMed  CAS  Google Scholar 

  15. Rimessi P, Gualandi F, Morelli C, Trabanell C, Wu Q, Possati L, Montesi M, Barrett JC, Barbanti-Brodano G (1994) Transfer of human chromosome 3 to an ovarian carcinoma cell line identifies three regions on 3p involved in ovarian cancer. Oncogene 9:3467–3474

    PubMed  CAS  Google Scholar 

  16. Russell SE, McCluggage WG (2004) A multistep model for ovarian tumorigenesis: the value of mutation analysis in the KRAS and BRAF genes. J Pathol 203:617–619

    Article  PubMed  CAS  Google Scholar 

  17. Silva EG, Kurman RJ, Russell P, Scully RE (1996) Symposium: ovarian tumors of borderline malignancy. Int J Gynecol Pathol 15:281–302

    Article  PubMed  CAS  Google Scholar 

  18. Song MS, Song SJ, Ayad NG, Chang JS, Lee JH, Hong HK, Lee H, Choi N, Kim J, Kim H, Kim JW, Choi EJ, Kirschner MW, Lim DS (2004) The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol 6:129–137

    Article  PubMed  CAS  Google Scholar 

  19. Wong IH, Chan J, Wong J, Tam PK (2004) Ubiquitous aberrant RASSF1A promoter methylation in childhood neoplasia. Clin Cancer Res 10:994–1002

    Article  PubMed  CAS  Google Scholar 

  20. Xing M Cohen Y, Mambo E, Tallini G, Udelsman R, Ladenson PW, Sidransky D (2004) Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis. Cancer Res 64:1664–1668

    Article  PubMed  CAS  Google Scholar 

  21. Yoon JH, Dammann R, Pfeifer GP (2001) Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int J Cancer 94:212–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Samsung Biomedical Research Institute grant no. SBRI CA32161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geunghwan Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, YL., Kang, S.Y., Choi, J.S. et al. Aberrant hypermethylation of RASSF1A promoter in ovarian borderline tumors and carcinomas. Virchows Arch 448, 331–336 (2006). https://doi.org/10.1007/s00428-005-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-005-0091-3

Keywords

Navigation