Skip to main content

Advertisement

Log in

Immunohistochemical localization of subtilisin/kexin-like proprotein convertases in human atherosclerosis

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Integrins are heterodimeric α/β receptors that link the cytoskeleton with the extracellular matrix, thereby regulating several cell functions important in atherosclerosis. In vitro, the subtilisin/kexin-like proprotein convertases (PCs), namely PC5 and furin, have been shown to be responsible for the endoproteolytic activation of the αv integrin subunit. Based on their cleavage activity, these PCs are potential targets in atherosclerosis. In the present study, we investigated the localization of furin and PC5 in different stages of human atherosclerosis. Immunohistochemical analysis of furin and PC5 revealed their presence in vascular smooth-muscle cells and endothelial cells in atherosclerotic and non-atherosclerotic lesions. However, in the more advanced lesions, furin and PC5 staining was significantly expressed in macrophages/foam cells. In vitro, THP-1 derived macrophages contained furin and PC5, and maturation of monocytes to macrophages was accompanied by enhanced αvβ3 cell-surface expression. Inhibition of furin/PC5 with the specific pharmacological furin-like PC-inhibitor dec-CMK inhibited αv endoproteolytic activation but did not abolish αvβ3 cell-surface expression. This indicates that furin/PC5 is required for αv endoproteolytic activation but not for αv routing and sorting to the cell surface. In conclusion, our study demonstrates that furin and PC5 are significantly expressed in mononuclear cells in advanced human atherosclerotic lesions, where they regulate αv endoproteolytic activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Auwerx J (1991) The human leukemia cell line, THP-1: a multifaceted model for the study of moncyte-macrophage differentiation. Experientia 47:22–31

    Google Scholar 

  2. Berthet V, Rigot V, Champion S, Secchi J, Fouchier F, Marvaldi J, Luis J (2000) Role of endoproteolytic processing in the adhesive and signaling functions of alphavbeta5 integrin. J Biol Chem 275:33308–33313

    Google Scholar 

  3. Berton G, Lowell CA (1999) Integrin signaling in neutrophils and macrophages. Cell Signal 9:612–635

    Google Scholar 

  4. Bishop GG, McPherson JA, Sanders JM, Hesselbacher SE, Feldman MJ, McNamara CA, Gimple LW, Powers ER, Mousa SA, Sarembock IJ (2001) Selective alpha(v)beta(3)-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation 103:1906–1911

    Google Scholar 

  5. Buja LM, Willerson JT (1994) Role of inflammation in coronary plaque disruption. Circulation 89:503–505

    CAS  PubMed  Google Scholar 

  6. Cabanas C, Sanchez-Madrid F, Aller P, Yague E, Bernabeu C (1990) Phorbol esters induce differentiation of U-937 human promonocytic cells in the absence of LFA-1/ICAM-1-mediated intercellular adhesion. Eur J Biochem 191:599–604

    Google Scholar 

  7. Coleman KR, Braden GA, Willingham MC, Sane DC (1999) Vitaxin, a humanized monoclonal antibody to the vitronectin receptor (alpha v beta 3), reduced neointima hyperplasia and total vessel area after balloon injury in hypercholesteremic rabbits. Circ Res 84:1268–1276

    Google Scholar 

  8. de Bie I, Marcinkiewicz M, Malide D, Lazure C, Nakayama K, Bendayan M, Seidah NG (1996) The isoforms of the proprotein convertase PC5 are sorted to different subcellular compartments. J Cell Biol 35:1261–1275

    Google Scholar 

  9. Delwel GO, Kuikman I, van der Schors RC, de Melker AA, Sonnenberg A (1997) Identification of the cleavage sites in the alpha6A integrin subunit: structural requirements for cleavage and functional analysis of the uncleaved alpha6Abeta1 integrin. Biochem J 324:263–272

    Google Scholar 

  10. Dufourcq P, Louis H, Moreau C, Daret D, Boisseau MR, Lamaziere JM, Bonnet J (1998) Vitronectin expression and interaction with receptors in smooth muscle cells from human atheromatous plaque. Arterioscler Thromb Vasc Biol 18:168–176

    Google Scholar 

  11. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degradating activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    CAS  PubMed  Google Scholar 

  12. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360:358–361

    Google Scholar 

  13. Hermann P, Armant M, Brown E, Rubio M, Ishihara H, Caspary RG, Lindberg FP, Armitage R, Maliszewski C, Delespesse G, Sarfati M (1999) The vitronectin receptor and its associated CD47 molecule mediate proinflammatory cytokine synthesis in human monocytes by interaction with soluble CD23. J Cell Biol 144:767–775

    Google Scholar 

  14. Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM (1995) Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ Res 77:1129–1135

    Google Scholar 

  15. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  CAS  PubMed  Google Scholar 

  16. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  CAS  PubMed  Google Scholar 

  17. Lissitzky JC, Luis J, Munzer JS, Benjannet S, Parat F, Chretien M, Marvaldi J, Seidah NG (2000) Endoproteolytic processing of integrin pro-alpha subunits involves the redundant function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid converting enzyme (PACE) 4, PC5B or PC7. Biochem J 346:133–138

    Google Scholar 

  18. Marcinkiewicz M, Marcinkiewicz J, Chen A, Leclaire F, Chrétien M, Richardson P (1999) Nerve growth factor and proprotein convertases furin and PC7 in transected sciatic nerves and in nerve segments cultured in conditioned media: their presence in Schwann cells, macrophages, and smooth muscle cells. J Comp Neurol 403:471–485

    Google Scholar 

  19. Mbikay M, Tadros H, Ishida N, Lerner CP, De Lamirande E, Chen A, El-Alfy M, Clermont Y, Seidah NG, Chretien M, Gagnon C, Simpson EM (1997) Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc Natl Acad Sci U S A 94:6842–6846

    Google Scholar 

  20. Osterud B, Bjorklid E (2003) Role of monocytes in atherogenesis. Physiol Rev 83:1069–1112

    CAS  PubMed  Google Scholar 

  21. Patel SS, Thiagarajan R, Willerson JT, Yeh ET (1998) Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation 97:75–81

    Google Scholar 

  22. Rigot V, Andre F, Lehmann M, Lissitzky JC, Marvaldi J, Luis J (1999) Biogenesis of alpha6beta4 integrin in a human colonic adenocarcinoma cell line. Involvement of calnexin. Eur J Biochem 261:659–666

    Google Scholar 

  23. Ross R (1993) The pathogenesis of atherosclerosis: a perspectives for the 1990s. Nature 362:801–809

    Article  CAS  PubMed  Google Scholar 

  24. Sakai J, Rawson RB, Espenshade PJ, Cheng D, Seegniller AC, Goldstein JL, Brown MS (1998) Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 2:505–514

    Article  CAS  PubMed  Google Scholar 

  25. Seidah NG, Mbikay M, Marcinkiewicz M, Chrétien M (1998) The mammalian precursor convertases: paralogs of the subtilisin/kexin family of calcium-dependent serine proteinases. In: Hook VYH (ed) Proteolytic and cellular mechanisms in prohormone and proprotein processing. R.G. Landes Company, Georgetown, TX, pp 49–76

  26. Seidah NG, Mowla SJ, Hamelin J, Mamarbachi AM, Benjannet S, Touré BB, Basak A, Munzer JS, Marcinkiewicz J, Zhong M, Barale JC, Lazure C, Murphy RA, Chrétien M, Marcinkiewicz M (1999) Mammalian subtilisin/kexin isozyme SKI-1: a widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc Natl Acad Sci U S A 96:1321–1326

    Google Scholar 

  27. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chrétien M (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A 100:928–933

    Google Scholar 

  28. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    Article  CAS  PubMed  Google Scholar 

  29. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 14:840–856

    CAS  PubMed  Google Scholar 

  30. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15:1512–1531

    CAS  PubMed  Google Scholar 

  31. Stawowy P, Blaschke F, Kilimnik A, Goetze S, Kallisch H, Chrétien M, Marcinkiewicz M, Fleck E, Graf K (2002) Proprotein convertase PC5 regulation by PDGF-BB involves PI3-kinase/p70(s6)-kinase activation in vascular smooth muscle cells. Hypertension 39:399–404

    Google Scholar 

  32. Stawowy P, Graf K, Goetze S, Roser M, Chrétien M, Seidah NG, Fleck E, Marcinkiewicz M (2003) Coordinated regulation and colocalization of alpha v integrin and its activating enzyme proprotein convertase PC5 in vivo. Histochem Cell Biol 119:239–245

    Google Scholar 

  33. Stawowy P, Kallisch H, Veinot JP, Kilimnik A, Prichett W, Goetze S, Seidah NG, Chrétien M, Fleck E, Graf K (2004) Endoproteolytic activation of alpha (v) integrin by proprotein convertase PC5 is required for vascular smooth muscle cell adhesion to vitronectin and integrin-dependent signaling. Circulation 109:770–776

    Google Scholar 

  34. Stefanidakis M, Ruohtula T, Borregaard N, Gahmberg CG, Koivunen E (2004) Intracellular and cell surface localization of a complex between alphaMbeta2 integrin and promatrix metalloproteinase-9 progelatinase in neutrophils. J Immunol 172:7060–7068

    Google Scholar 

  35. Suzuki S, Argraves WS, Pytela R, Arai H, Krusius T, Pierschbacher MD, Ruoslahti E (1986) cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors. Proc Natl Acad Sci U S A 83:8614–8618

    Google Scholar 

  36. Takahashi S, Nakagawa T, Banno T, Watanabe T, Murakami K, Nakayama K (1995) Localization of furin to the trans-Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J Biol Chem 270:28397–28401

    Google Scholar 

  37. Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766

    Google Scholar 

  38. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42:1530–1536

    Google Scholar 

  39. Veinot JP, Srivasta S, Carlson P (1999) Beta 3 integrin—a promiscuous integrin involved in vascular pathology. Can J Cardiol 15:762–770

    Google Scholar 

  40. Weerasinghe D, McHugh KP, Ross FP, Brown EJ, Gisler RH, Imhof BA (1998) A role for the alphavbeta3 integrin in the transmigration of monocytes. J Cell Biol 142:595–607

    Google Scholar 

  41. Wilcox JN, Nelken NA, Coughlin SR, Gordon D, Schall TJ (1994) Local expression of inflammatory cytokines in human atherosclerotic plaques. J Atheroscler Thromb 1:S10–S13

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Bundesministerium für Bildung und Forschung (BMBF) (CAN02/005) to PS and EF and Canadian Institutes of Health Research (CIHR) (MGP-44363) to NGS. JPV and MC were supported from the Heart and Stroke Foundation of Ontario (NA4337 and T4891) and the Canadian Stroke Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Stawowy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stawowy, P., Kallisch, H., Borges Pereira Stawowy, N. et al. Immunohistochemical localization of subtilisin/kexin-like proprotein convertases in human atherosclerosis. Virchows Arch 446, 351–359 (2005). https://doi.org/10.1007/s00428-004-1198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-004-1198-7

Keywords

Navigation