Skip to main content

Advertisement

Log in

Array comparative genomic hybridisation analysis of gamma-irradiated human thyrocytes

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The susceptibility of thyroid epithelium to radiation-induced carcinogenesis is well recognised. In this context, thyroid carcinogenesis is associated with specific somatic ret/papillary thyroid carcinoma (PTC) rearrangements and morphologically with the papillary phenotype. Previous studies have demonstrated the possibility of inducing ret rearrangements in vitro using X-rays. The purpose of our study was to assess whether gamma (γ) radiation using a Caesium 137 source can induce specific ret rearrangements in a human thyroid epithelial cell culture model. We further hypothesised that if radiation-induced thyroid carcinogenesis is associated with non-random rearrangement events, then DNA copy gain and loss induced by irradiation may also occur in a non-random manner. We irradiated SV40-immortalised human thyroid epithelial cells with incremental doses of γ-radiation and, using TaqMan reverse-transcription polymerase chain reaction, looked for the presence of the common ret rearrangements. Cohorts showing evidence of ret/PTC chimeric transcripts were further analysed using microarray comparative genomic hybridisation (CGH) to detect copy gain and loss associated with radiation. Four Grays of γ-radiation was sufficient to induce ret/PTC-3. In this model, transcripts of ret/PTC-1 were not detected, and we suggest that the type of radiation may influence the resulting rearrangement that occurs. Using array CGH, we have demonstrated a predominant pattern of subtelomeric deletions occurring in association with this radiation cohort and raise the possibility that chromosome 10 may be a hotspot for radiation-induced damage for as yet unknown reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rubino C, Cailleux AF, De Valthaire F, Schlumberger M (2002) Thyroid cancer after radiation exposure. Eur J Cancer 38:645–647

    Article  CAS  PubMed  Google Scholar 

  2. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, Schneider AB, Tucker MA, Boice JD Jr (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141:259–277

    CAS  PubMed  Google Scholar 

  3. Lundell M, Hakulinen T, Holm LE (1994) Thyroid cancer after radiotherapy for skin hemangioma in infancy. Radiat Res 140:334–339

    CAS  PubMed  Google Scholar 

  4. De Vathaire F, Hardiman C, Shamsaldin A, Campbell S, Grimaud E, Hawkins M, Raquin M, Oberlin O, Diallo I, Zucker JM, Panis X, Lagrange JL, Daly-Schveitzer N, Lemerle J, Chavaudra J, Schlumberger M, Bonaiti C (1999) Thyroid carcinomas after irradiation for a first cancer during childhood. Arch Int Med 159:2713–2720

    Article  Google Scholar 

  5. Hamilton TE, Van Belle G, LoGerfo JP (1987) Thyroid carcinoma in Marshall Islanders exposed to nuclear fallout. JAMA 258:629–636

    Article  CAS  PubMed  Google Scholar 

  6. Kazakov VS, Demidchik EP, Astakhova LN (1992) Thyroid cancer after Chernobyl. Nature 359:21–22

    Article  CAS  Google Scholar 

  7. Shibata Y, Yamashita S, Masyakin VB, Panasyuk GD, Nagataki S (2001) 15 years after Chernobyl: new evidence of thyroid cancer. Lancet 358:1965–1966

    Article  CAS  PubMed  Google Scholar 

  8. Santoro M, Carlomagno F, Hay ID, Herrmann MA, Grieco M, Melillo R, Pierotti MA, Bongarzone I, Della-Porta G, Berger N, Paulin C, Fabien N, Vecchio G, Jenkins RB, Fusco A (1992) Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype A. J Clin Invest 89:1517–1522

    CAS  PubMed  Google Scholar 

  9. Kimura ET, Nikiforova MN, Zhaowen Z, Knauf J, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid carcinoma: genetic evidence for constitutive activation of the RET/PTC-RASBRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457

    CAS  PubMed  Google Scholar 

  10. Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, Maimo V, Botelho T, Seruca R, Sobrinho-Simoes M (2003) BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578–4580

    Article  CAS  PubMed  Google Scholar 

  11. Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA (2003) High prevalence of BRAF gene mutations in papillary thyroid carcinoma and thyroid tumour cell lines. Cancer Res 63:4561–4567

    CAS  PubMed  Google Scholar 

  12. Xing M, Vasko V, Tallini G, Larin A, Wu G, Udelsman R, Ringel MD, Ladenson PW, Sidransky D (2004) BRAF T1796A transversion mutation in various thyroid neoplasms. J Clin Endocrinol Metab 89:1365–1368

    Article  CAS  PubMed  Google Scholar 

  13. Tallini G, Asa SL (2001) Ret oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol 8:345–354

    Article  CAS  PubMed  Google Scholar 

  14. Thomas GA, H. Bunnell, Cook HA, Williams ED, Nerovnya A, Cherstvoy ED, Tronko ND, Bogdanova TI, Chiappetta G, Viglietto G, Pentimalli F, Salvatore G, Fusco A, Santoro M, Vecchio G (2001) High prevalence of RET/PTC rearrangements in Ukrainian and Belarusian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab 84:4232–4238

    Article  Google Scholar 

  15. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumours. Science 258:818–821

    CAS  PubMed  Google Scholar 

  16. Hui AB, Lo KW, Yin XL, Poon WS, Ng HK (2001) Detection of multiple gene amplifications in glioblastoma multiforme using array based comparative genomic hybridization. Lab Invest 81:717–723

    CAS  PubMed  Google Scholar 

  17. Pollack JR, Sørlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Børresen-Dale AL, Brown PO (2002) Microarray analysis revels a major direct role of DNA copy number alteration in the transcriptional program of human breast tumours. PNAS 99:12963–12968

    Article  CAS  PubMed  Google Scholar 

  18. Wilhelm M, Veltman JA, Osshen AB, Jain AN, Moore DH, Presti JC, Kocacs G, Waldman FM (2002) Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer. Cancer Res 62:957–960

    CAS  PubMed  Google Scholar 

  19. Weiss M, Hermsen MAJA, Meijer GA, van Grieken NCT, Baak JPA, Kuipers EJ, van Diest PJ (1999) Demystified...comparative genomic hybridization. J Clin Pathol 52:243–251

    CAS  Google Scholar 

  20. Riches AC, Herceg Z, Bryant PE, Wynford-Thomas D (1994) Radiation-induced transformation of SV40-immortalized human thyroid epithelial cells by single and fractionated exposure to γ-irradiation in vitro. Int J Radiat Biol 66:757–765

    CAS  PubMed  Google Scholar 

  21. Zitelsberger H, Bruch J, Smida J, Hieber L, Peddie CM, Bryant PE, Riches AC, Fung J, Weier HU, Bauchinger M (2001) Clonal chromosomal aberrations in Simian virus 40-transfected thyroid cells and in tumors developed after in vitro irradiation. Int J Cancer 96:166–177

    Article  PubMed  Google Scholar 

  22. Ito T, Seyama T, Iwamoto KS, Hayashi T, Mizuno T, Tsuyama N, Dohi K, Nakamura N, Akiyama M (1993) In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res 53:2940–2943

    CAS  PubMed  Google Scholar 

  23. Mizuno T, Iwamoto KS, Kyoizumi S, Nagamura H, Shinohara T, Koyama K, Seyama T, Hamatani K (2000) Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene 19:438–443

    Article  CAS  PubMed  Google Scholar 

  24. Williams ED (2002) Cancer after nuclear fallout: lessons from the Chernobyl accident. Nature 2:543–549

    Article  CAS  Google Scholar 

  25. Gavrilin YI, Khrouch VT, Shinkarev SM, Krysenko NA, Skryabin AM, Bouville A, Anspaugh LR (1999) Chernobyl accident: reconstruction of thyroid dose for inhabitants of the Republic of Belarus. Health Phys 76:105–119

    CAS  PubMed  Google Scholar 

  26. Lemoine NR, Mayall ES, Jones T, Sheer D, McDermid S, Kendall-Taylor P, Wynford-Thomas D (1989) Characteristics of human thyroid epithelial cells immortalized in vitro by simian virus 40 DNA transfection. Br J Cancer 60:897–903

    CAS  PubMed  Google Scholar 

  27. Pacini F, Vivaldi A, Santoro M, Fedele M, Fusco A, Romei C, Basolo F, Pinchera A (1998) Simian virus 40-like DNA sequences in human papillary thyroid carcinomas. Oncogene 16:665–669

    Article  CAS  PubMed  Google Scholar 

  28. Finn SP, Smyth P, O’Leary JJ, Sweeney EC, Sheils OM (2003) Ret/PTC chimeric transcripts in an Irish cohort of sporadic papillary thyroid carcinoma. J Clin Endocrinol Metab 88:938–941

    Article  CAS  PubMed  Google Scholar 

  29. Wright EG (1999) Inherited and inducible chromosomal instability: a fragile bridge between genome integrity mechanisms and tumourigenesis. J Pathol 187:19–27

    Article  CAS  PubMed  Google Scholar 

  30. Riches A, Peddie C, Rendell S, Bryant P, Zitzelsberger H, Bruch J, Smida J, Hieber L, Bauchinger M (2001) Neoplastic transformation and cytogenetic changes after Gamma irradiation of human epithelial cells expressing telomerase. Radiat Res 155:222–229

    CAS  PubMed  Google Scholar 

  31. Smida J, Salassidis K, Hieber L, Zitzelsberger H, Kellerer AM, Demidchik EP, Negele T, Spelsberg F, Lengfelder E, Werner M, Bauchinger M (1999) Distinct frequency of ret rearrangements in papillary thyroid carcinomas of children and adults from Belarus. Int J Cancer 80:32–38

    Article  CAS  PubMed  Google Scholar 

  32. Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M, Suarez HG (1997) High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15:1263–1273

    Article  CAS  PubMed  Google Scholar 

  33. Sarasin A, Bounacer A, Lepage F, Schlumberger M, Suarez HG (1999) Mechanisms of mutagenesis in mammalian cells. Application to human thyroid tumours. C R Acad Sci III 322:143–149

    Article  CAS  PubMed  Google Scholar 

  34. Latre L, Tusell L, Martin M, Miro R, Egozcue J, Blasco MA, Genesca A (2003) Shortened telomeres join to DNA breaks interfering with their correct repair. Exp Cell Res 287:282–288

    Article  CAS  PubMed  Google Scholar 

  35. Sabatier L, Lebeau J, Dutrillaux B (1995) Radiation-induced carcinogenesis: individual sensitivity and genomic instability. Radiat Environ Biophys 34:229–232

    CAS  PubMed  Google Scholar 

  36. Hemmer S, Wesenius VM, Knuutila S, Franssila K, Joensuu H (1999) DNA copy number changes in thyroid carcinoma. Am J Pathol 154:1539–1547

    CAS  PubMed  Google Scholar 

  37. Kjellman P, Lagercrantz S, Hoog A, Wallin G, Larsson C, Zedenius J (2001) Gain of 1q and loss of 9q21.3-q32 are associated with a less favorable prognosis in papillary thyroid carcinoma. Genes Chromosomes Cancer 32:43–49

    Article  CAS  PubMed  Google Scholar 

  38. Zitelsberger H, Lehmann L, Hieber L, Weier HG, Janish C, Fung J, Negele T, Spelsberg F, Lengfelder E, Demidchik E, Salassidis K, Kellerer AM, Werner M, Bauchinger M (1999) Cytogenetic changes in radiation induced tumors of the thyroid. Cancer Res 59:135–140

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Health Research Board of Ireland. Thanks to Professor Sissy Jhiang for providing ret/PTC-3 plasmid used for positive control. Thanks to Professor Kingston Mills for providing irradiation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Finn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finn, S.P., Smyth, P., O’Regan, E. et al. Array comparative genomic hybridisation analysis of gamma-irradiated human thyrocytes. Virchows Arch 445, 396–404 (2004). https://doi.org/10.1007/s00428-004-1070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-004-1070-9

Keywords

Navigation