Skip to main content
Log in

Unexpected UBX expression in the maxilliped of the mystacocarid crustacean Derocheilocharis remanei—evidence for a different way of making a maxilliped?

  • Short Communication
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In terms of morphology, crustacean maxillipeds are hybrid appendages. They arise in anterior thoracic segments and display characteristics of both locomotory (thoracic) and feeding (gnathal) appendages. Maxillipeds are functionally integrated with the anterior gnathal appendages. Hox gene expression patterns and immunolabeling with the FP6.87 antibody, which detects conserved epitopes of UBX and ABD-A proteins, reveal that maxillipeds are consistently associated with a shift in the expression of the homeotic gene Ubx. Ubx transcription products or proteins only appear in thoracic segments with a typical locomotory thoracopod and are consistently absent in the maxilliped. This pattern is found in various crustaceans: the copepod Mesocyclops, the mysid Mysidium, the decapods Homarus and Periclimenes, the isopod Porcellio, and the amphipod Parhyale. In Parhyale, which possesses maxillipeds on the first thoracic segment, gene manipulation experiments have shown that a leg-like thoracic appendage can be recovered by mis-expressing Ubx in that segment and walking legs can be transformed into maxillipeds by Ubx-knockdown. This survey focuses on the expression of UBX/ABD-A proteins, studied using the FP6.87 antibody, in the larval stages of the mystacocarid crustacean Derocheilocaris remanei. Mystacocarids inhabit the intertidal meiofauna zone of sandy beaches and possess one pair of maxillipeds on the first thoracic segment. Strong UBX/ABD-A expression in the developing maxilliped makes Derocheilocaris unique among crustaceans. Our data might also show that the transformation from locomotory thoracopod to maxilliped cannot be accounted for by the mere presence or absence of UBX, because in mystacocarids, UBX is present in both kinds of limbs. The role of the other Hox gene known to be involved in this transformation, Sex combs reduced (Scr), is unclear. The results presented here may document a new example of a shift in Hox gene function in arthropods. The difference in UBX/ABD-A expression between D. remanei and the copepod maxillipeds is of particular interest because correspondences between the feeding apparatus—including the maxilliped—in mystacocarids and copepods have been suggested as being of phylogenetic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abzhanov A, Kaufman TC (1999) Novel regulation of the homeotic gene Scr associated with a crustacean leg- to-maxilliped appendage transformation. Development 1128:1121–1128

    Google Scholar 

  • Abzhanov A, Kaufman TC (2000) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283

    Article  CAS  PubMed  Google Scholar 

  • Akam M (1999) Hox genes in arthropod development and evolution. Biol Bull 195:373–374

    Article  Google Scholar 

  • Averof M, Akam M (1995) Hox genes and the diversification of insect and crustacean body plans. Nature 376:420–423

    Article  CAS  PubMed  Google Scholar 

  • Averof M, Patel NH (1997) Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388:682–686

    Article  CAS  PubMed  Google Scholar 

  • Averof M, Pavlopoulos A, Kontarakis Z (2010) Evolution of new appendage types by gradual changes in Hox gene expression—the case of crustacean maxillipeds. Palaeodiversity 3:141–145

    Google Scholar 

  • Damen WG, Hausdorf M, Seyfarth EA, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci U S A 95:10665–10670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delamare-Deboutteville C (1960) Biologie des eaux souterraines littorales et continentales. Hermann, Paris

    Google Scholar 

  • Choo SW, Russell S (2011) Genomic approaches to understanding Hox gene function. In: Friedmann T, Dunlap JC, Goodwin SF (eds) Advances in genetics, 1st ed, vol 76. Elsevier Inc., Philadelphia, pp 55–91

    Google Scholar 

  • Haug JT, Olesen J, Maas A, Waloszek D (2011) External morphology and post-embryonic development of Derocheilocaris remanei (Mystacocarida) revisited, with a comparison to the Cambrian taxon Skara. J Crustac Biol 31:668–692

    Article  Google Scholar 

  • Hessler RR, Sanders HL (1966) Derocheilocaris typicus Pennak & Zinn (Mystacocarida) revisted. Crustaceana 11:141–155

    Article  Google Scholar 

  • Hessler RR, Elofsson R (2012) The reproductive system of Derocheilocaris typica (Crustacea, Mystacocarida). Arthropod Struct Dev 41:281–291

    Article  PubMed  Google Scholar 

  • Hsia CC, Paré AC, Hannon M, Ronshaugen M, McGinnis W (2010) Silencing of an abdominal Hox gene during early development is correlated with limb development in a crustacean trunk. Evol Dev 12:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes CL, Kaufman TC (2002a) Hox genes and the evolution of the arthropod body plan. Evol Dev 499:459–499

    Article  Google Scholar 

  • Hughes CL, Kaufman TC (2002b) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238

    CAS  PubMed  Google Scholar 

  • Kelsh R, Weinzierl R, White R, Akam M (1994) Homeotic gene expression in the locust Schistocerca: an antibody that detects conserved epitopes in ultrabithorax and abdominal-A proteins. Dev Genet 15:19–31

    Article  CAS  PubMed  Google Scholar 

  • Khadjeh S, Turetzek N, Pechmann M, Schwager EE, Wimmer EA, Damen WGM, Prpic N-M (2012) Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression. Proc Natl Acad Sci U S A 109:4921–4926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  CAS  PubMed  Google Scholar 

  • Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH (2009) Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci U S A 106:13892–13896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi J, Ruppert ER (1982) Functional morphology of locomotion in Derocheilocaris typica (Crustacea, Mystacocarida). Zoomorphology 100:1–10

    Article  Google Scholar 

  • Martin A, Serano JM, Jarvis E, Bruce HS, Wang J, Ray S, Barker CA, O’Connell LC, Patel NH (2016) CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution. Curr Biol 26:14–26

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ (1984) A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308:428–433

  • Olesen J (2001) External morphology and larval development of Derocheilocaris remanei Delamere-Deboutteville & Chappuis, 1951 (Crustacea, Mystacocarida), with a comparison of crustacean segmentation and tagmosis patterns. R Danish Acad Sci Lett 53:1–60

    Google Scholar 

  • Scott MP, Tamkun JW, Hartzell GW III (1989) The structure and function of the homeodomain. Biochem Biophys Acta 989:25–48

    CAS  PubMed  Google Scholar 

  • Serano JM, Martin A, Liubicich DM, Jarvis E, Bruce HS, La K, Browne WE, Grimwood J, Patel NH (2016) Comprehensive analysis of Hox gene expression in the amphipod crustacean Parhyale hawaiensis. Dev Biol 409:297–309

    Article  CAS  PubMed  Google Scholar 

  • Swedmark B (1964) The interstitial fauna of marine sand. Biol Rev 39:1–42

    Article  Google Scholar 

  • Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, Averof M (2009) Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci U S A 106:13897–13902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennak RW, Zinn DJ (1943) Mystacocarida, a new order of Crustacea from intertidal beaches in Massachusetts and Connecticut. Literary Licensing, LLC, Whitefish

    Google Scholar 

  • Pross A (1985) Untersuchungen über die Fortpflanzungsbiologie von Derocheilocaris remanei (Crustacea, Mystacocarida). Zoologische Beiträge, Neue Folge, pp 193–208

    Google Scholar 

  • Scholtz G, Abzhanov A, Alwes F, Biffis C, Pint J (2009) Development, genes, and decapod evolution. In: Martin J, Crandall KA, Felder DL (eds) Decapod crustacean Phylogenetics, crustacean issues, vol 18. CRC Press Taylor & Francis Group, London, pp 31–46

    Chapter  Google Scholar 

  • Sharma PP, Schwager EE, Extavour CG, Giribet G (2012) Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol Dev 14:450–463

    Article  CAS  PubMed  Google Scholar 

  • Walossek D, Müller KJ (1997) Early arthropod phylogeny in the light of the Cambrian “Orsten” fossils. Arthropod fossils and phylogeny. In: Fortey RA, Thomas RH (eds) Arthropod relationships, systematics, vol 55. Chapman and Hall, London, pp 139–153

    Google Scholar 

Download references

Acknowledgements

We are thankful for the comments of two anonymous reviewers and AE Nikola Prpic-Schäper. Lucy Cathrow improved the English, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fritsch.

Additional information

Communicated by Nikola-Michael Prpic

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritsch, M., Richter, S. Unexpected UBX expression in the maxilliped of the mystacocarid crustacean Derocheilocharis remanei—evidence for a different way of making a maxilliped?. Dev Genes Evol 227, 289–296 (2017). https://doi.org/10.1007/s00427-017-0586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-017-0586-3

Keywords

Navigation