Skip to main content
Log in

Ontogeny of pioneer neurons in the antennal nervous system of the grasshopper Schistocerca gregaria

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The nervous system of the antenna of the grasshopper Schistocerca gregaria consists of two nerve tracts in which sensory cells project their axons to the brain. Each tract is pioneered early in embryogenesis by a pair of identified cells located apically in the antennal lumen. The pioneers are thought to originate in the epithelium of the antenna and then delaminate into the lumen where they commence axogenesis. However, unambiguous molecular identification of these cells in the epithelium, of an identifiable precursor, and of their mode of generation has been lacking. In this study, we have used immunolabeling against neuron-specific horseradish peroxidase and against Lachesin, a marker for differentiating epithelial cells, in combination with the nuclear stain DAPI, to identify the pioneers within the epithelium of the early embryonic antenna. We then track their delamination into the lumen as differentiated neurons. The pioneers are not labeled by the mesodermal/mesectodermal marker Mes3, consistent with an epithelial (ectodermal) origin. Intracellular dye injection, as well as labeling against the mitosis marker phospho-histone 3, identifies precursor cells in the epithelium, each associated with a column of cells. Culturing with the S-phase label 5-ethynyl-2′-deoxyuridine (EdU) shows that both a precursor and its column have incorporated the label, confirming a lineage relationship. Each set of pioneers can be shown to belong to a separate lineage of such epithelial cells, and the precursors remain and are proliferative after generating the pioneers. Analyses of mitotic spindle orientation then enable us to propose a model in which a precursor generates its pioneers asymmetrically via self-renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams RR, Maiato H, Earnshaw W, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153:865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford, New York

    Google Scholar 

  • Anderson H, Tucker RP (1988) Pioneer neurones use basal lamina as a substratum for outgrowth in the embryonic grasshopper limb. Development 104:601–608

    CAS  PubMed  Google Scholar 

  • Anderson H, Tucker RP (1989) Spatial and temporal variation in the structure of the basal lamina in embryonic grasshopper limbs during pioneer neurone outgrowth. Development 106:185–194

    CAS  PubMed  Google Scholar 

  • Apitz H, Salecker I (2014) A challenge of numbers and diversity: neurogenesis in the Drosophila optic lobe. J Neurogen 28:233–249

    Article  CAS  Google Scholar 

  • Ball EE, de Couet HG, Horn PL, Quinn JMA (1987) Haemocytes secrete basement membrane components in embryonic locusts. Development 99:255–259

    CAS  PubMed  Google Scholar 

  • Bastiani MJ, du Lac S, Goodman CS (1985) The first growth cones in insect embryos: model system for studying the development of neuronal specificity. In: Selverston AI (ed) Model neural networks and behaviour. Plenum Press, New York, pp. 149–174

    Chapter  Google Scholar 

  • Bate CM (1976) Embryogenesis of an insect nervous system I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol Exp Morphol 35:107–123

    CAS  PubMed  Google Scholar 

  • Bellaïche Y, Schweisguth F (2001) Lineage diversity in the Drosophila nervous system. Curr Opin Gen Dev 11:418–423

    Article  Google Scholar 

  • Bentley D, O’Connor TP (1992) Guidance and steering of peripheral growth cones in grasshopper embryos. In: Letourneau C, Kater SB, Macagno ER (eds) The nerve growth cone. Raven Press, New York, pp. 265–282

    Google Scholar 

  • Bentley D, Keshishian H, Shankland M, Torian-Raymond A (1979) Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol 54:47–74

    CAS  PubMed  Google Scholar 

  • Berlot J, Goodman CS (1984) Guidance of peripheral pioneer neurons in the grasshopper: adhesive hierarchy of epithelial and neuronal surfaces. Science 223:493–496

    Article  CAS  PubMed  Google Scholar 

  • Bier E, Jan LY, Jan YN (1990) rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. Genes Dev 4:190–203

    Article  CAS  PubMed  Google Scholar 

  • Bodmer R, Jan YN (1987) Morphological differentiation of the embryonic peripheral neurons in Drosophila. Roux’s Arch Dev Biol 196:69–77

    Article  Google Scholar 

  • Boyan GS, Ehrhardt EE (2015) Pioneer neurons of the antennal nervous system project to protocerebral pioneers in the grasshopper Schistocerca gregaria. Dev Genes Evol 225:377–382

    Article  PubMed  Google Scholar 

  • Boyan GS, Williams JLD (2004) Embryonic development of the sensory innervation of the antenna of the grasshopper Schistocerca gregaria. Arthr Struct Dev 33:381–397

    Article  CAS  Google Scholar 

  • Boyan GS, Williams JLD (2007) Embryonic development of a peripheral nervous system: nerve tract associated cells and pioneer neurons in the antenna of the grasshopper Schistocerca gregaria. Arthr Struct Dev 36:336–350

    Article  CAS  Google Scholar 

  • Boyan GS, Williams JLD (2008) Evidence that the peripheral brain commissure is pioneered by neurons with a peripheral-like ontogeny in the grasshopper Schistocerca gregaria. Arth Struct Dev 37:186–198

    Article  CAS  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin

    Book  Google Scholar 

  • Casares F, Mann RS (1998) Control of antennal versus leg development in Drosophila Nature 392:723–726

  • Chapman RF (1982) The insects: structure and function. Hodder and Stoughton, London

    Google Scholar 

  • Chapman RF (2002) Development of phenotypic differences in sensillum populations on the antennae of a grasshopper, Schistocerca americana. J Morphol 254:186–194

    Article  CAS  PubMed  Google Scholar 

  • Dambey-Chaudiere C, Jamet E, Burri M, Bopp D, Basler K, Hafen E, Dumont N, Spielmann P, Ghysen A, Noel M (1992) The paired box gene pox-neuro—a determinant of poly-innervated sense organs in Drosophila. Cell 69:159–172

    Article  Google Scholar 

  • Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298:1959–1964

    Article  CAS  PubMed  Google Scholar 

  • Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135:1575–1587

    Article  CAS  PubMed  Google Scholar 

  • Doe CQ, Goodman CS (1985a) Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111:193–205

    Article  CAS  PubMed  Google Scholar 

  • Doe CQ, Goodman CS (1985b) Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev Biol 111:206–219

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt E, Kleele T, Boyan GS (2015b) A method for immunolabeling neurons in intact cuticularized insect appendages. Dev Genes Evol 225:187–194

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt E, Liu Y, Boyan GS (2015a) Axogenesis in the antennal nervous system of the grasshopper Schistocerca gregaria revisited: the base pioneers. Dev Genes Evol 225:39–45

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt EE, Graf P, Kleele T, Liu Y, Boyan GS (2016) Fates of identified pioneer cells in the developing antennal nervous system of the grasshopper Schistocerca gregaria. Arth Struct Dev 45:23–30

    Article  Google Scholar 

  • Ganfornina MD, Sánchez D, Bastiani MJ (1995) Lazarillo, a new GPI-linked surface lipocalin, is restricted to a subset of neurons in the grasshopper embryo. Development 121:123–134

    CAS  PubMed  Google Scholar 

  • Gibson G, Gehring WJ (1988) Head and thoracic transformation caused by ectopic expression of Antennapedia during Drosophila development. Development 102:657–675

    Google Scholar 

  • Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Ann Rev Neurosci 19:341–377

    Article  CAS  PubMed  Google Scholar 

  • Goodman CS, Doe CQ (1994) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila, vol 1. Cold Spring Harbor Press, New York, pp. 1131–1206

    Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  • Gupta BP, Rodrigues V (1997) Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes Cells 2:225–233

    Article  CAS  PubMed  Google Scholar 

  • Hartenstein V (1987) The influence of segmental compartmentalization on the development of the larval peripheral nervous system in Drosophila melanogaster. Roux’s Arch Dev Biol 196:101–112

    Article  Google Scholar 

  • Heathcote RD (1981) Differentiation of an identified sensory neuron (SR) and associated structures (CTO) in grasshopper embryos. J Comp Neurol 202:1–18

    Article  CAS  PubMed  Google Scholar 

  • Hendzel M, Wie Y, Mancini MA, Van Hooser A, Ranali T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  CAS  PubMed  Google Scholar 

  • Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30:276–283

    Article  CAS  PubMed  Google Scholar 

  • Ho RK, Goodman CS (1982) Peripheral pathways are pioneered by an array of central and peripheral neurones in grasshopper embryos. Nature 297:404–406

    Article  CAS  PubMed  Google Scholar 

  • Jan LY, Jan YN (1982) Antibodies to horseradish-peroxidase as specific neuronal markers in Drosophila and grasshopper embryos. Proc Natl Acad Sci U S A 79:2700–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan YN, Jan LY (1990) Genes required for specifying cell fates in Drosophila embryonic sensory nervous system. Trends Neurosci 13:493–498

    Article  CAS  PubMed  Google Scholar 

  • Jarman AP (2014) Development of the auditory organ (Johnston’s organ) in Drosophila. In: Romand R, Varela-Nieto I (eds) Development of auditory and vestibular systems. Academic Press, pp 31–63

  • Jarman AP, Sun Y, Jan LY, Jan YN (1995) Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121:2019–2030

    CAS  PubMed  Google Scholar 

  • Karlstrom RO, Wilder LP, Bastiani MJ (1993) Lachesin: an immunoglobulin superfamily protein whose expression correlates with neurogenesis in grasshopper embryos. Development 118:509–522

    CAS  PubMed  Google Scholar 

  • Keil TA (1992) Fine structure of a developing insect olfactory organ: morphogenesis of the silkmoth antenna. Microsc Res Tech 22:351–371

    Article  CAS  PubMed  Google Scholar 

  • Keil TA (1997) Comparative morphogenesis of sensilla: a review. Int J Insect Morphol Embryol 26:151–160

    Article  Google Scholar 

  • Keil TA, Steiner C (1990) Morphogenesis of the antenna of the male silkmoth, Antheraea polyphemus. II. Differential mitoses of ‘dark’ precursor cells create the Anlagen of sensilla. Tissue Cell 22:705–720

    Article  CAS  PubMed  Google Scholar 

  • Keshishian H (1980) The origin and morphogenesis of pioneer neurons in the grasshopper metathoracic leg. Dev Biol 80:388–397

    Article  CAS  PubMed  Google Scholar 

  • Keshishian H, Bentley D (1983) Embryogenesis of peripheral nerve pathways in grasshoppers legs. I. The initial nerve pathway to the CNS. Dev Biol 96:89–102

    Article  CAS  PubMed  Google Scholar 

  • Kotrla KJ, Goodman CS (1984) Transient expression of a surface antigen on a small subset of neurones during embryonic development. Nature 311:151–153

    Article  CAS  PubMed  Google Scholar 

  • Lefcort F, Bentley D (1989) Organization of cytoskeletal elements and organelles preceding growth cone mergence from an identified neuron in situ. J Cell Biol 108:1737–1749

    Article  CAS  PubMed  Google Scholar 

  • Locke M, Huie P (1981) Epidermal feet in insect morphogenesis. Nature 293:733–735

    Article  CAS  PubMed  Google Scholar 

  • Meier T, Chabaud F, Reichert H (1991) Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria and the fly Drosophila melanogaster. Development 112:241–253

    CAS  PubMed  Google Scholar 

  • Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Ann Rev Neurosci 22:351–388

    Article  CAS  PubMed  Google Scholar 

  • Naimski P, Bierzyimageski A, Fikus M (1980) Quantitative fluorescent analysis of different conformational forms of DNA bound to the dye 4′,6-diamidine-2-phenylindole, and separated by gel electrophoresis. Anal Biochem 106:471–475

    Article  CAS  PubMed  Google Scholar 

  • Neumüller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23:2675–2699

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramón y Cajal S (1890) A quelle epoque aparaissent les expansion des cellule neurveuses de la moelle epinere du poulet. Anat Anz 5:609–613

    Google Scholar 

  • Sánchez D, Ganfornina MD, Bastiani MJ (1995) Developmental expression of the lipocalin Lazarillo and its role in axonal pathfinding in the grasshopper embryo. Development 121:135–147

    PubMed  Google Scholar 

  • Seidel C, Bicker G (2000) Nitric oxide and cGMP influence axogenesis of antennal pioneer neurons. Development 127:4541–4549

    CAS  PubMed  Google Scholar 

  • Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471:508–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi A, Kurita K, Terasawa T, Nakamura T, Bando T, Moriyama Y, Mito T, Noji S, Ohuchi H (2012) Functional analysis of the role of eye absent and sine oculis in the developing eye of the cricket Gryllus bimaculatus. Develop Growth Differ 54:227–240

    Article  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Shepherd S, Ackerman L, Jan LY, Jan YN (1989) numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58:349–360

    Article  CAS  PubMed  Google Scholar 

  • Yamashiki N (1981) The role of the spindle body in unequal division of the grasshopper neuroblast. Zool Mag 90:93–101

    Google Scholar 

  • Yamashiki N, Kawamura KY (1986a) Microdissection studies on the polarity of unequal division in grasshopper neuroblasts. I. Subsequent divisions in neuroblast-type cells produced against the polarity by micromanipulation. Exp Cell Res 166:127–138

    Article  CAS  PubMed  Google Scholar 

  • Yamashiki N, Kawamura KY (1986b) Microdissection studies on the polarity of unequal division in grasshopper neuroblasts. II. Cell division in binucleate neuroblasts. Develop Growth Differ 28:603–609

    Article  Google Scholar 

Download references

Acknowledgements

We thank Drs. Sanchez and Ganfornina for the gift of the Lazarillo antibody, Dr. Goodman for the gift of the Mes3 antibody, and Dr. Bastiani for the gift of the Lachesin antibody. We thank Dr. Yu Liu for the critical reading of the manuscript and Karin Fischer for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Boyan.

Ethics declarations

All experiments were performed in accordance with the guidelines for animal welfare as laid down by the Deutsche Forschungsgemeinschaft.

Competing interests

The authors declare that they have no competing interests.

Funding

Both authors received support for this study from the Graduate School of Systemic Neuroscience, University of Munich.

Additional information

Communicated by Claude Desplan

Both authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyan, G., Ehrhardt, E. Ontogeny of pioneer neurons in the antennal nervous system of the grasshopper Schistocerca gregaria . Dev Genes Evol 227, 11–23 (2017). https://doi.org/10.1007/s00427-016-0565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-016-0565-0

Keywords

Navigation