Skip to main content
Log in

Aryl hydrocarbon receptor (AHR) in the cnidarian Nematostella vectensis: comparative expression, protein interactions, and ligand binding

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has diverse roles in development, physiology, and environmental sensing in bilaterian animals. Studying the expression of conserved genes and function of proteins in outgroups to protostomes and deuterostomes assists in understanding the antiquity of gene function and deciphering lineage-specific differences in these bilaterian clades. We describe the developmental expression of AHR from the sea anemone Nematostella vectensis and compare its expression with three other members of the bHLH-PAS family (AHR nuclear translocator (ARNT), Cycle, and a proto-Single-Minded/Trachealess). NvAHR expression was highest early in the larval stage with spatial expression in the basal portion of the ectoderm that became increasingly restricted to the oral pole with concentrated expression in tentacles of the juvenile polyp. The other bHLH-PAS genes showed a divergent expression pattern in later larval stages and polyps, in which gene expression was concentrated in the aboral end, with broader expression in the endoderm later in development. In co-immunoprecipitation assays, we found no evidence for heterodimerization of AHR with ARNT, contrary to the conservation of this specific interaction in all bilaterians studied to date. Similar to results with other invertebrate AHRs but in contrast to vertebrate AHRs, NvAHR failed to bind two prototypical xenobiotic AHR ligands (2,3,7,8-tetrachlorodibenzo-p-dioxin, β-naphthoflavone). Together, our data suggest that AHR’s original function in Eumetazoa likely involved developmental patterning, potentially of neural tissue. The role of heterodimerization in the function of AHR may have arisen after the cnidarian–bilaterian ancestor. The absence of xenobiotic binding to NvAHR further supports a hypothesis for a derived role of this protein in chemical sensing within the chordates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. N. vectensis AHR paralogs are annotated as NvAHRa and NvAHRb to avoid confusion with the numerical annotation of vertebrate AHR paralogs (e.g., AHR1 and AHR2), which resulted from independent duplication events.

References

  • Butler RB, Kelley ML, Powell WH, Hahn ME, Van Beneden RJ (2001) An aryl hydrocarbon receptor homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack TCDD and BNF binding. Gene 278:223–234

    Article  CAS  PubMed  Google Scholar 

  • Chia F-S, Koss R (1979) Fine structural studies of the nervous system and the apical organ in the planula larva of the sea anemone Anthopleura elegantissima. J Morphol 160:275–297

    Article  Google Scholar 

  • Darling JA, Reitzel AM, Burton PM, Mazza ME, Ryan JF, Sullivan JC, Finnerty JR (2005) Rising starlet: the starlet sea anemone, Nematostella vectensis. Bioessays 27:211–221

    Article  CAS  PubMed  Google Scholar 

  • Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334

    Article  CAS  PubMed  Google Scholar 

  • Denison MS, Fisher JM, Whitlock JP (1989) Protein–DNA interactions at recognition sites for the dioxin-Ah receptor complex. J Biol Chem 264:16478–16482

    CAS  PubMed  Google Scholar 

  • Denison MS, Soshilov AA, He G, Degroot DE, Zhao B (2011) Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 124:1–22

    Article  CAS  PubMed  Google Scholar 

  • Duncan DM, Burgess EA, Duncan I (1998) Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Gene Dev 12:1290–1303

    Article  CAS  PubMed  Google Scholar 

  • Emmons RB, Duncan D, Estes PA, Kiefel P, Mosher JT, Sonnenfeld M, Ward MP, Duncan I, Crews ST (1999) The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development 126:3937–3945

    CAS  PubMed  Google Scholar 

  • Erwin DH (2009) Early origin of the bilaterian developmental toolkit. Philos Trans R Soc Lond B Biol Sci 364:2253–2261

    Article  CAS  PubMed  Google Scholar 

  • Gu Y-Z, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561

    Article  CAS  PubMed  Google Scholar 

  • Gyoja F, Kawashima T, Satoh N (2012) A genomewide survey of bHLH transcription factors in the coral Acropora digitifera identifies three novel orthologous families, pearl, amber, and peridot. Dev Genes Evol 222:63–76

    Article  CAS  PubMed  Google Scholar 

  • Hahn ME (2002) Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact 141:131–160

    Article  CAS  PubMed  Google Scholar 

  • Hahn ME, Hestermann EV (2007) Chapter 5. Receptor-mediated mechanisms of toxicity. In: Di Giulio R. T., Hinton D. E. (eds.) The toxicology of fishes. Taylor & Francis, London, p. 235–272

  • Hao N, Whitelaw ML, Shearwin KE, Dodd IB, Chapman-Smith A (2011) Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR. Nucleic Acids Res 39:3695–3709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffman EC, Reyes H, Chu F-F, Sander F, Conley LH, Brooks BA, Hankinson O (1991) Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252:954–958

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Powell-Coffman JA, Jin Y (2004) The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development 131:819–828

    Article  CAS  PubMed  Google Scholar 

  • Karchner SI, Powell WH, Hahn ME (1999) Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus: evidence for a novel subfamily of ligand-binding basic helix loop helix-PER-ARNT-SIM (bHLH-PAS) factors. J Biol Chem 274:33814–33824

    Article  CAS  PubMed  Google Scholar 

  • Karchner SI, Franks DG, Hahn ME (2005) AHR1B, a new functional aryl hydrocarbon receptor in zebrafish: tandem arrangement of ahr1b and ahr2 genes. Biochem J 392:153–161

    Article  CAS  PubMed  Google Scholar 

  • Karchner SI, Franks DG, Kennedy SW, Hahn ME (2006) The molecular basis for differential dioxin sensitivity in birds: role of the aryl hydrocarbon receptor. Proc Natl Acad Sci 103:6252–6257

    Article  CAS  PubMed  Google Scholar 

  • Kim MD, Jan LY, Jan YN (2006) The bHLH-PAS protein spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. Gene Dev 20:2806–2819

    Article  CAS  PubMed  Google Scholar 

  • Kumburegama S, Wijesena N, Xu R, Wikramanayake A (2011) Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/beta-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): implications for the evolution of gastrulation. EvoDevo 2:2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, Von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    Article  CAS  PubMed  Google Scholar 

  • Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, Degnan BM (2008) Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 25:980–996

    Article  CAS  PubMed  Google Scholar 

  • Layden MJ, Boekhout M, Martindale MQ (2012) Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Magie CR, Pang K, Martindale MQ (2005) Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 215:618–630

    Article  CAS  PubMed  Google Scholar 

  • Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386:403–407

    Article  CAS  PubMed  Google Scholar 

  • Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69:235–254

    Article  CAS  PubMed  Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: "mesodermal" gene expression in a diploblastic animal, the sea anemone, Nematostella vectensis (Phylum Cnidaria; Class Anthozoa). Development 131:2463–2474

    Article  CAS  PubMed  Google Scholar 

  • Matsumura F (2009) The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects. Biochem Pharmacol 77:608–626

    Article  CAS  PubMed  Google Scholar 

  • McMillan BJ, Bradfield CA (2007) The aryl hydrocarbon receptor sans xenobiotics: endogenous function in genetic model systems. Mol Pharmacol 72:487–498

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi N, Renfer E, Technau U, Rentzsch F (2012) Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 139:347–357

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okey AB (2007) An aryl hydrocarbon receptor odyssey to the shores of toxicology. Toxicol Sci 98:5–38

    Article  CAS  PubMed  Google Scholar 

  • Pang K, Matus DQ, Martindale MQ (2004) The ancestral role of COE genes may have been in chemoreception: evidence from the development of the sea anemone, Nematostella vectensis (Phylum Cnidaria; Class Anthozoa). Dev Genes Evol 214:134–138

    Article  CAS  PubMed  Google Scholar 

  • Powell WH, Bright R, Bello SM, Hahn ME (2000) Developmental and tissue-specific expression of AHR1, AHR2, and ARNT2 in dioxin-sensitive and-resistant populations of the marine fish Fundulus heteroclitus. Toxicol Sci 57:229–239

    Article  CAS  PubMed  Google Scholar 

  • Powell-Coffman JA, Bradfield CA, Wood WB (1998) Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc Natl Acad Sci U S A 95:2844–2849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puga A, Xia Y, Elferink C (2002) Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem Biol Interact 141:117

    Article  CAS  PubMed  Google Scholar 

  • Putnam N, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov V, Jurka J, Genikhovich G, Grigoriev I, Lucas S, Steele R, Finnerty J, Technau U, Martindale M, Rokhsar D (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Powell-Coffman JA (2004) The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. Dev Biol 270:64–75

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Zhai Z, Powell-Coffman JA (2006) The Caenorhabditis elegans AHR-1 transcription complex controls expression of soluble guanylate cyclase genes in the URX neurons and regulates aggregation behavior. Dev Biol 298:606–615

    Article  CAS  PubMed  Google Scholar 

  • Reitzel AM, Tarrant AM (2009) Nuclear receptor complement of the cnidarian Nematostella vectensis: phylogenetic relationships and developmental expression patterns. BMC Evol Biol 9:230

    Article  PubMed Central  PubMed  Google Scholar 

  • Reitzel AM, Sullivan JC, Traylor-Knowles N, Finnerty JR (2008) Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis. Biol Bull 214:233–254

    Article  PubMed  Google Scholar 

  • Reitzel AM, Behrendt L, Tarrant AM (2010) Light entrained rhythmic gene expression in the sea anemone Nematostella vectensis: the evolution of the animal circadian clock. PLoS ONE 5:e12805

    Article  PubMed Central  PubMed  Google Scholar 

  • Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U (2008) FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 135:1761–1769

    Article  CAS  PubMed  Google Scholar 

  • Reyes H, Reisz-Porszasz S, Hankinson O (1992) Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science 256:1193–1195

    Article  CAS  PubMed  Google Scholar 

  • Rowley AF, Vogan CL, Taylor GW, Clare AS (2005) Prostaglandins in non-insectan invertebrates: recent insights and unsolved problems. J Exp Biol 208:3–14

    Article  CAS  PubMed  Google Scholar 

  • Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR (2007) Pre-Bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2:e153

    Article  PubMed Central  PubMed  Google Scholar 

  • Sebé-Pedrós A, De Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28:1241–1254

    Article  PubMed  Google Scholar 

  • Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Degnan BM, Vervoort M (2007) Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Sinigaglia C, Busengdal H, Leclère L, Technau U, Rentzsch F (2013) The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 11:e1001488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CJ, O’brien T, Chatzigeorgiou M, Spencer WC, Feingold-Link E, Husson Steven J, Hori S, Mitani S, Gottschalk A, Schafer William R, Miller Iii David M (2013) Sensory neuron fates are distinguished by a transcriptional switch that regulates dendrite branch stabilization. Neuron 79:266–280

    Article  CAS  PubMed  Google Scholar 

  • Sogawa K, Nakano R, Kobayashi A, Kikuchi Y, Ohe N, Matsushita N, Fujii-Kuriyama Y (1995) Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation. Proc Natl Acad Sci U S A 92:1936–1940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stefanik DJ, Friedman LE, Finnerty JR (2013) Collecting, rearing, spawning and inducing regeneration of the starlet sea anemone, Nematostella vectensis. Nat Protoc 8:916–923

    Article  CAS  PubMed  Google Scholar 

  • Swanson HI, Chan WK, Bradfield CA (1995) DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem 270:26292–26302

    Article  CAS  PubMed  Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development 138:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Tian Y (2009) Ah receptor and NF-κB interplay on the stage of epigenome. Biochem Pharmacol 77:670–680

    Article  CAS  PubMed  Google Scholar 

  • Tulin S, Aguiar D, Istrail S, Smith J (2013) A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems. EvoDevo 4:16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I, Desplan C (2006) Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440:174–180

    Article  CAS  PubMed  Google Scholar 

  • Wilson SR, Joshi AD, Elferink CJ (2013) The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. J Pharmacol Exp Ther 345:419–429

    Article  CAS  PubMed  Google Scholar 

  • Wolenski FS, Garbati MR, Lubinski TJ, Traylor-Knowles N, Dresselhaus E, Stefanik DJ, Goucher H, Finnerty JR, Gilmore TD (2011) Characterization of the core elements of the NF-kB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol 31:1076–1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Li X, Jevince AR, Guan L, Wang J, Hall DH, Huang X, Ding M (2013) Neuronal target identification requires AHA-1-mediated fine-tuning of Wnt signaling in C. elegans. PLoS Genet 9:e1003618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Award Number F32HD062178 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development to AMR, the Tropical Research Initiative of the Woods Hole Oceanographic Institution and National Science Foundation Award Number MCB1057354 to AMT, and by Award Number R01ES006272 from the National Institute of Environmental Health Sciences to MEH. AMR was also supported by incentive funds provided by the University of North Carolina at Charlotte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Reitzel.

Additional information

Communicated by Volker G. Hartenstein

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

(JPEG 265 kb)

High resolution image (EPS 15794 kb)

Supplemental Figure 2

(JPEG 2505 kb)

High resolution image (EPS 2652 kb)

Supplemental Table 1

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitzel, A.M., Passamaneck, Y.J., Karchner, S.I. et al. Aryl hydrocarbon receptor (AHR) in the cnidarian Nematostella vectensis: comparative expression, protein interactions, and ligand binding. Dev Genes Evol 224, 13–24 (2014). https://doi.org/10.1007/s00427-013-0458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-013-0458-4

Keywords

Navigation